--- license: cc-by-nc-nd-4.0 pipeline_tag: object-detection tags: - yolov10 - ultralytics - yolo - object-detection - pytorch - cs2 - Counter Strike --- Counter Strike 2 players detector ## Supported Labels ``` [ 'c', 'ch', 't', 'th' ] ``` ## All models in this series - [yoloV10n_cs2](https://huggingface.co/Vombit/yolov10n_cs2) (5.5mb) - [yoloV10s_cs2](https://huggingface.co/Vombit/yolov10s_cs2) (15.7mb) - [yoloV10m_cs2](https://huggingface.co/Vombit/yolov10m_cs2) (31.9mb) - [yoloV10b_cs2](https://huggingface.co/Vombit/yolov10b_cs2) (39.7mb) - [yoloV10l_cs2](https://huggingface.co/Vombit/yolov10l_cs2) (50.0mb) - [yoloV10x_cs2](https://huggingface.co/Vombit/yolov10x_cs2) (61.4mb) ## How to use ```python # load Yolo from ultralytics import YOLO # Load a pretrained YOLO model model = YOLO(r'weights\yolov**_cs2.pt') # Run inference on 'image.png' with arguments model.predict( 'image.png', save=True, device=0 ) ``` ## Predict info Ultralytics YOLOv8.2.90 🚀 Python-3.12.5 torch-2.3.1+cu121 CUDA:0 (NVIDIA GeForce RTX 4060, 8188MiB) - yolov10b_cs2_fp16.engine (640x640 5 ts, 5 ths, 7.1ms) - yolov10b_cs2.engine (640x640 5 ts, 5 ths, 11.2ms) - yolov10b_cs2_fp16.onnx (640x640 5 ts, 5 ths, 246.2ms) - yolov10b_cs2.onnx (640x640 5 ts, 5 ths, 257.6ms) - yolov10b_cs2.pt (384x640 5 ts, 5 ths, 114.4ms) ## Dataset info Data from over 120 games, where the footage has been tagged in detail. ![image/jpg](https://huggingface.co/Vombit/yolov10b_cs2/resolve/main/labels.jpg) ![image/jpg](https://huggingface.co/Vombit/yolov10b_cs2/resolve/main/labels_correlogram.jpg) ## Train info The training took place over 150 epochs. ![image/png](https://huggingface.co/Vombit/yolov10b_cs2/resolve/main/results.png) You can also support me with a cup of coffee: [donate](https://www.donationalerts.com/r/vombit_donation)