Vijayendra commited on
Commit
74446e5
·
verified ·
1 Parent(s): a555984

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -148
README.md CHANGED
@@ -33,168 +33,64 @@ library_name: peft
33
  - **Paper [optional]:** [More Information Needed]
34
  - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
39
 
40
- ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
 
115
- #### Factors
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
 
 
 
 
 
 
118
 
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
 
 
 
 
174
 
175
- **BibTeX:**
 
 
 
 
 
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
  [More Information Needed]
200
  ### Framework versions
 
33
  - **Paper [optional]:** [More Information Needed]
34
  - **Demo [optional]:** [More Information Needed]
35
 
36
+ ## How to Use
37
 
38
+ # Install required libraries
39
+ !pip install unsloth peft bitsandbytes accelerate transformers
40
 
41
+ # Import necessary modules
42
+ from transformers import AutoTokenizer
43
+ from unsloth import FastLanguageModel
44
 
45
+ # Define the MedQA prompt
46
+ medqa_prompt = """You are a medical QA system. Answer the following medical question clearly and in detail with complete sentences.
47
 
48
+ ### Question:
49
+ {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
+ ### Answer:
52
+ """
53
 
54
+ # Load the model and tokenizer using unsloth
55
+ model_name = "Vijayendra/Phi4-MedQA" # Replace with your Hugging Face model name
56
+ model, tokenizer = FastLanguageModel.from_pretrained(
57
+ model_name=model_name,
58
+ max_seq_length=2048,
59
+ dtype=None, # Use default precision
60
+ load_in_4bit=True, # Enable 4-bit quantization
61
+ device_map="auto" # Automatically map model to available devices
62
+ )
63
 
64
+ # Enable faster inference
65
+ FastLanguageModel.for_inference(model)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
+ # Prepare the medical question
68
+ medical_question = "What are the common symptoms of diabetes?" # Replace with your medical question
69
+ inputs = tokenizer(
70
+ [medqa_prompt.format(medical_question)],
71
+ return_tensors="pt",
72
+ padding=True,
73
+ truncation=True,
74
+ max_length=1024
75
+ ).to("cuda") # Ensure inputs are on the GPU
76
 
77
+ # Generate the output
78
+ outputs = model.generate(
79
+ **inputs,
80
+ max_new_tokens=512, # Allow for detailed responses
81
+ use_cache=True # Speeds up generation
82
+ )
83
 
84
+ # Decode and clean the response
85
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
 
86
 
87
+ # Extract and print the generated answer
88
+ answer_text = response.split("### Answer:")[1].strip() if "### Answer:" in response else response.strip()
89
 
90
+ print(f"Question: {medical_question}")
91
+ print(f"Answer: {answer_text}")
92
 
 
 
 
 
 
 
 
93
 
 
94
 
95
  [More Information Needed]
96
  ### Framework versions