End of training
Browse files- README.md +91 -0
- config.json +18 -0
- model.safetensors +3 -0
- runs/Sep01_18-22-43_71681bb45d1f/events.out.tfevents.1725215002.71681bb45d1f.1195.0 +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- jpn
|
4 |
+
license: mit
|
5 |
+
base_model: pyannote/speaker-diarization-3.1
|
6 |
+
tags:
|
7 |
+
- speaker-diarization
|
8 |
+
- speaker-segmentation
|
9 |
+
- generated_from_trainer
|
10 |
+
datasets:
|
11 |
+
- diarizers-community/callhome
|
12 |
+
model-index:
|
13 |
+
- name: speaker-segmentation-fine-tuned-callhome-jpn
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# speaker-segmentation-fine-tuned-callhome-jpn
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the diarizers-community/callhome dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.7390
|
25 |
+
- Der: 0.2115
|
26 |
+
- False Alarm: 0.0300
|
27 |
+
- Missed Detection: 0.0148
|
28 |
+
- Confusion: 0.1667
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.001
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: cosine
|
53 |
+
- num_epochs: 25
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:|
|
59 |
+
| 0.6055 | 1.0 | 162 | 0.7220 | 0.2327 | 0.0308 | 0.0139 | 0.1880 |
|
60 |
+
| 0.5431 | 2.0 | 324 | 0.6852 | 0.2248 | 0.0308 | 0.0137 | 0.1803 |
|
61 |
+
| 0.5333 | 3.0 | 486 | 0.6997 | 0.2243 | 0.0309 | 0.0137 | 0.1797 |
|
62 |
+
| 0.4688 | 4.0 | 648 | 0.6579 | 0.2175 | 0.0309 | 0.0139 | 0.1727 |
|
63 |
+
| 0.4674 | 5.0 | 810 | 0.6863 | 0.2206 | 0.0309 | 0.0137 | 0.1760 |
|
64 |
+
| 0.4568 | 6.0 | 972 | 0.6751 | 0.2151 | 0.0309 | 0.0139 | 0.1703 |
|
65 |
+
| 0.4528 | 7.0 | 1134 | 0.6515 | 0.2135 | 0.0307 | 0.0141 | 0.1686 |
|
66 |
+
| 0.4464 | 8.0 | 1296 | 0.6786 | 0.2154 | 0.0312 | 0.0139 | 0.1704 |
|
67 |
+
| 0.4146 | 9.0 | 1458 | 0.6735 | 0.2124 | 0.0308 | 0.0139 | 0.1677 |
|
68 |
+
| 0.4098 | 10.0 | 1620 | 0.6900 | 0.2132 | 0.0309 | 0.0138 | 0.1686 |
|
69 |
+
| 0.3943 | 11.0 | 1782 | 0.7008 | 0.2099 | 0.0306 | 0.0140 | 0.1653 |
|
70 |
+
| 0.3889 | 12.0 | 1944 | 0.6992 | 0.2121 | 0.0300 | 0.0144 | 0.1676 |
|
71 |
+
| 0.3904 | 13.0 | 2106 | 0.7262 | 0.2165 | 0.0303 | 0.0141 | 0.1720 |
|
72 |
+
| 0.3694 | 14.0 | 2268 | 0.7131 | 0.2114 | 0.0301 | 0.0142 | 0.1671 |
|
73 |
+
| 0.3753 | 15.0 | 2430 | 0.7101 | 0.2098 | 0.0304 | 0.0140 | 0.1654 |
|
74 |
+
| 0.3732 | 16.0 | 2592 | 0.7181 | 0.2138 | 0.0301 | 0.0145 | 0.1692 |
|
75 |
+
| 0.3621 | 17.0 | 2754 | 0.7293 | 0.2133 | 0.0302 | 0.0146 | 0.1684 |
|
76 |
+
| 0.3482 | 18.0 | 2916 | 0.7399 | 0.2126 | 0.0301 | 0.0146 | 0.1679 |
|
77 |
+
| 0.3503 | 19.0 | 3078 | 0.7351 | 0.2122 | 0.0300 | 0.0148 | 0.1673 |
|
78 |
+
| 0.3558 | 20.0 | 3240 | 0.7367 | 0.2131 | 0.0301 | 0.0147 | 0.1682 |
|
79 |
+
| 0.3579 | 21.0 | 3402 | 0.7437 | 0.2127 | 0.0300 | 0.0148 | 0.1679 |
|
80 |
+
| 0.352 | 22.0 | 3564 | 0.7420 | 0.2128 | 0.0301 | 0.0148 | 0.1679 |
|
81 |
+
| 0.3662 | 23.0 | 3726 | 0.7380 | 0.2116 | 0.0300 | 0.0148 | 0.1668 |
|
82 |
+
| 0.3381 | 24.0 | 3888 | 0.7387 | 0.2115 | 0.0300 | 0.0148 | 0.1667 |
|
83 |
+
| 0.3446 | 25.0 | 4050 | 0.7390 | 0.2115 | 0.0300 | 0.0148 | 0.1667 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.42.4
|
89 |
+
- Pytorch 2.4.0+cu121
|
90 |
+
- Datasets 2.21.0
|
91 |
+
- Tokenizers 0.19.1
|
config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SegmentationModel"
|
4 |
+
],
|
5 |
+
"chunk_duration": 10.0,
|
6 |
+
"max_speakers_per_chunk": 3,
|
7 |
+
"max_speakers_per_frame": 2,
|
8 |
+
"min_duration": null,
|
9 |
+
"model_type": "pyannet",
|
10 |
+
"sample_rate": 16000,
|
11 |
+
"torch_dtype": "float32",
|
12 |
+
"transformers_version": "4.42.4",
|
13 |
+
"warm_up": [
|
14 |
+
0.0,
|
15 |
+
0.0
|
16 |
+
],
|
17 |
+
"weigh_by_cardinality": false
|
18 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad2ad578429c58fb9f34b6c5c2905d214187c4aa22888c0f8733ba95bb82bf29
|
3 |
+
size 5899124
|
runs/Sep01_18-22-43_71681bb45d1f/events.out.tfevents.1725215002.71681bb45d1f.1195.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:160f11300fc4def29ebb913dffca447a2c1a76f4eaf68bf39e623bccd2c2786a
|
3 |
+
size 51633
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02fb8d71137c54704232868f586e715e1d5a21c5cd36b49fdfbc228cc91ca8aa
|
3 |
+
size 5176
|