Vasireddy
commited on
Commit
·
78e1252
1
Parent(s):
04e9b6b
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/flan-t5-small
|
4 |
+
tags:
|
5 |
+
- text2textgeneration
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- rouge
|
9 |
+
model-index:
|
10 |
+
- name: flan-t5-small-finetune-medicine-v3
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# flan-t5-small-finetune-medicine-v3
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 2.8757
|
22 |
+
- Rouge1: 15.991
|
23 |
+
- Rouge2: 5.2469
|
24 |
+
- Rougel: 14.6278
|
25 |
+
- Rougelsum: 14.7076
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 5.6e-05
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 8
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
|
56 |
+
| No log | 1.0 | 5 | 2.9996 | 12.4808 | 4.9536 | 12.3712 | 12.2123 |
|
57 |
+
| No log | 2.0 | 10 | 2.9550 | 13.6471 | 4.9536 | 13.5051 | 13.5488 |
|
58 |
+
| No log | 3.0 | 15 | 2.9224 | 13.8077 | 5.117 | 13.7274 | 13.753 |
|
59 |
+
| No log | 4.0 | 20 | 2.9050 | 13.7861 | 5.117 | 13.6982 | 13.7001 |
|
60 |
+
| No log | 5.0 | 25 | 2.8920 | 14.668 | 5.117 | 14.4497 | 14.4115 |
|
61 |
+
| No log | 6.0 | 30 | 2.8820 | 14.9451 | 5.2469 | 14.5797 | 14.6308 |
|
62 |
+
| No log | 7.0 | 35 | 2.8770 | 15.991 | 5.2469 | 14.6278 | 14.7076 |
|
63 |
+
| No log | 8.0 | 40 | 2.8757 | 15.991 | 5.2469 | 14.6278 | 14.7076 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.31.0
|
69 |
+
- Pytorch 2.0.1+cu118
|
70 |
+
- Datasets 2.14.1
|
71 |
+
- Tokenizers 0.13.3
|