# 中文预训练Longformer模型 | Longformer_ZH with PyTorch 相比于Transformer的O(n^2)复杂度,Longformer提供了一种以线性复杂度处理最长4K字符级别文档序列的方法。Longformer Attention包括了标准的自注意力与全局注意力机制,方便模型更好地学习超长序列的信息。 Compared with O(n^2) complexity for Transformer model, Longformer provides an efficient method for processing long-document level sequence in Linear complexity. Longformer’s attention mechanism is a drop-in replacement for the standard self-attention and combines a local windowed attention with a task motivated global attention. 我们注意到关于中文Longformer或超长序列任务的资源较少,因此在此开源了我们预训练的中文Longformer模型参数, 并提供了相应的加载方法,以及预训练脚本。 There are not so much resource for Chinese Longformer or long-sequence-level chinese task. Thus we open source our pretrained longformer model to help the researchers. ## 加载模型 | Load the model 您可以使用谷歌云盘或百度网盘下载我们的模型 You could get Longformer_zh from Google Drive or Baidu Yun. - Google Drive: https://drive.google.com/file/d/1h0oh6hmjc0w3n21VburjiZPJbChRSS4n/view?usp=sharing - 百度云: 链接:https://pan.baidu.com/s/1tgAOd7SuWxbwTRSagN0lyg 提取码:bdgb 我们同样提供了Huggingface的自动下载 We also provide auto load with HuggingFace.Transformers. ``` from Longformer_zh import LongformerZhForMaksedLM LongformerZhForMaksedLM.from_pretrained('Longformer_zh') ``` ## 注意事项 | Notice - 区别于英文原版Longformer, 中文Longformer的基础是Roberta_zh模型,其本质上属于 `Transformers.BertModel` 而非 `RobertaModel`, 因此无法使用原版代码直接加载。 - Different with origin English Longformer, Longformer_Zh is based on Roberta_zh which is a subclass of `Transformers.BertModel` not `RobertaModel`. Thus it is impossible to load it with origin code. - 我们提供了修改后的中文Longformer文件,您可以使用其加载参数。 - We provide modified Longformer_zh class, you can use it directly to load the model. - 如果您想将此参数用于更多任务,请参考`Longformer_zh.py`替换Attention Layer. - If you want to use our model on more down-stream tasks, please refer to `Longformer_zh.py` and replace Attention layer with Longformer Attention layer. ## 关于预训练 | About Pretraining - 我们的预训练语料来自 https://github.com/brightmart/nlp_chinese_corpus, 根据Longformer原文的设置,采用了多种语料混合的预训练数据。 - The corpus of pretraining is from https://github.com/brightmart/nlp_chinese_corpus. Based on the paper of Longformer, we use a mixture of 4 different chinese corpus for pretraining. - 我们的模型是基于Roberta_zh_mid (https://github.com/brightmart/roberta_zh),训练脚本参考了https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb - The basement of our model is Roberta_zh_mid (https://github.com/brightmart/roberta_zh). Pretraining scripts is modified from https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb. - 同时我们在原版基础上,引入了 `Whole-Word-Masking` 机制,以便更好地适应中文特性。 - We introduce `Whole-Word-Masking` method into pretraining for better fitting Chinese language. - `Whole-Word-Masking`代码改写自TensorFlow版本的Roberta_zh,据我们所知是第一个开源的Pytorch版本WWM. - Our WWM scripts is refacted from Roberta_zh_Tensorflow, as far as we know, it is the first open source Whole-word-masking scripts in Pytorch. - 模型 `max_seq_length = 4096`, 在 4 * Titan RTX 上预训练3K steps 大概用时4天。 - Max seuence length is 4096 and the pretraining took 4 days on 4 * Titan RTX. - 我们使用了 `Nvidia.Apex` 引入了混合精度训练,以加速预训练。 - We use `Nvidia.Apex` to accelerate pretraining. - 关于数据预处理, 我们采用 `Jieba` 分词与`JIONLP`进行数据清洗。 - We use `Jieba` Chinese tokenizer and `JIONLP` data cleaning. - 更多细节可以参考我们的预训练脚本 - For more details, please check our pretraining scripts. ## 更新计划 | Update Plan - 我们首先会放出预训练3K-steps的模型 - We released our 3K-steps pretrained model. - 在八月将开源训练15K-steps的模型 - We will release our 15K-steps full pretrained model in August. ## 效果测试 | Evaluation ### CCF Sentiment Analysis - 由于中文超长文本级别任务稀缺,我们仅采用CCF-Sentiment-Analysis任务进行测试 - Since it is hard to acquire open-sourced long sequence level chinese NLP task, we only use CCF-Sentiment-Analysis for evaluation. |Model|Dev F| |----|----| |Bert|80.3| |Bert-wwm-ext| 80.5| |Roberta-mid|80.5| |Roberta-large|81.25| |Longformer_SC|79.37| |Longformer_ZH|80.51| ### Pretraining BPC - 我们提供了预训练BPC(bits-per-character), BPC越小,代表语言模型性能更优。可视作PPL. - We also provide BPC scores of pretraining, the lower BPC score, the better performance Langugage Model has. You can also treat it as PPL. |Model|BPC| |---|---| |Longformer before training| 14.78| |Longformer after training| 3.10| ## 致谢 感谢东京工业大学 奥村·船越研究室 提供算力。 Thanks Okumula·Funakoshi Lab from Tokyo Institute of Technology who provides the devices and oppotunity for me to finish this project.