ValkyriaLenneth commited on
Commit
03fd0ee
·
1 Parent(s): 49c8405

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 中文预训练Longformer模型 | Longformer_ZH with PyTorch
2
+
3
+ 相比于Transformer的O(n^2)复杂度,Longformer提供了一种以线性复杂度处理最长4K字符级别文档序列的方法。Longformer Attention包括了标准的自注意力与全局注意力机制,方便模型更好地学习超长序列的信息。
4
+
5
+ Compared with O(n^2) complexity for Transformer model, Longformer provides an efficient method for processing long-document level sequence in Linear complexity. Longformer’s attention mechanism is a drop-in replacement for the standard self-attention and combines a local windowed attention with a task motivated global attention.
6
+
7
+ 我们注意到关于中文Longformer或超长序列任务的资源较少,因此在此开源了我们预训练的中文Longformer模型参数, 并提供了相应的加载方法,以及预训练脚本。
8
+
9
+ There are not so much resource for Chinese Longformer or long-sequence-level chinese task. Thus we open source our pretrained longformer model to help the researchers.
10
+ ## 加载模型 | Load the model
11
+ 您可以使用谷歌云盘或百度网盘下载我们的模型
12
+ You could get Longformer_zh from Google Drive or Baidu Yun.
13
+
14
+ - Google Drive: https://drive.google.com/file/d/1h0oh6hmjc0w3n21VburjiZPJbChRSS4n/view?usp=sharing
15
+ - 百度云: 链接:https://pan.baidu.com/s/1tgAOd7SuWxbwTRSagN0lyg 提取码:bdgb
16
+
17
+ 我们同样提供了Huggingface的自动下载
18
+ We also provide auto load with HuggingFace.Transformers.
19
+ ```
20
+ from Longformer_zh import LongformerZhForMaksedLM
21
+ LongformerZhForMaksedLM.from_pretrained('Longformer_zh')
22
+ ```
23
+
24
+ ## 注意事项 | Notice
25
+ - 区别于英文原版Longformer, 中文Longformer的基础是Roberta_zh模型,其本质上属于 `Transformers.BertModel` 而非 `RobertaModel`, 因此无法使用原版代码直接加载。
26
+ - Different with origin English Longformer, Longformer_Zh is based on Roberta_zh which is a subclass of `Transformers.BertModel` not `RobertaModel`. Thus it is impossible to load it with origin code.
27
+ - 我们提供了修改后的中文Longformer文件,您可以使用其加载参数。
28
+ - We provide modified Longformer_zh class, you can use it directly to load the model.
29
+ - 如果您想将此参数用于更多任务,请参考`Longformer_zh.py`替换Attention Layer.
30
+ - If you want to use our model on more down-stream tasks, please refer to `Longformer_zh.py` and replace Attention layer with Longformer Attention layer.
31
+
32
+ ## 关于预训练 | About Pretraining
33
+ - 我们的预训练语料来自 https://github.com/brightmart/nlp_chinese_corpus, 根据Longformer原文的设置,采用了多种语料混合的预训练数据。
34
+ - The corpus of pretraining is from https://github.com/brightmart/nlp_chinese_corpus. Based on the paper of Longformer, we use a mixture of 4 different chinese corpus for pretraining.
35
+ - 我们的模型是基于Roberta_zh_mid (https://github.com/brightmart/roberta_zh),训练脚本参考了https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb
36
+ - The basement of our model is Roberta_zh_mid (https://github.com/brightmart/roberta_zh). Pretraining scripts is modified from https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb.
37
+
38
+ - 同时我们在原版基础上,引入了 `Whole-Word-Masking` 机制,以便更好地适应中文特性。
39
+ - We introduce `Whole-Word-Masking` method into pretraining for better fitting Chinese language.
40
+ - `Whole-Word-Masking`代码改写自TensorFlow版本的Roberta_zh,据我们所知是第一个开源的Pytorch版本WWM.
41
+ - Our WWM scripts is refacted from Roberta_zh_Tensorflow, as far as we know, it is the first open source Whole-word-masking scripts in Pytorch.
42
+
43
+ - 模型 `max_seq_length = 4096`, 在 4 * Titan RTX 上预训练3K steps 大概用时4天。
44
+ - Max seuence length is 4096 and the pretraining took 4 days on 4 * Titan RTX.
45
+ - 我们使用了 `Nvidia.Apex` 引入了混合精度训练,以加速预训练。
46
+ - We use `Nvidia.Apex` to accelerate pretraining.
47
+ - 关于数据预处理, 我们采用 `Jieba` 分词与`JIONLP`进行数据清洗。
48
+ - We use `Jieba` Chinese tokenizer and `JIONLP` data cleaning.
49
+ - 更多细节可以参考我们的预训练脚本
50
+ - For more details, please check our pretraining scripts.
51
+
52
+ ## 更新计划 | Update Plan
53
+ - 我们首先会放出预训练3K-steps的模型
54
+ - We released our 3K-steps pretrained model.
55
+ - 在八月将开源训练15K-steps的模型
56
+ - We will release our 15K-steps full pretrained model in August.
57
+
58
+ ## 效果测试 | Evaluation
59
+ ### CCF Sentiment Analysis
60
+ - 由于中文超长文本级别任务稀缺,我们仅采用CCF-Sentiment-Analysis任务进行测试
61
+ - Since it is hard to acquire open-sourced long sequence level chinese NLP task, we only use CCF-Sentiment-Analysis for evaluation.
62
+
63
+ |Model|Dev F|
64
+ |----|----|
65
+ |Bert|80.3|
66
+ |Bert-wwm-ext| 80.5|
67
+ |Roberta-mid|80.5|
68
+ |Roberta-large|81.25|
69
+ |Longformer_SC|79.37|
70
+ |Longformer_ZH|80.51|
71
+
72
+ ### Pretraining BPC
73
+ - 我们提供了预训练BPC(bits-per-character), BPC越小,代表语言模型性能更优。可视作PPL.
74
+ - We also provide BPC scores of pretraining, the lower BPC score, the better performance Langugage Model has. You can also treat it as PPL.
75
+
76
+ |Model|BPC|
77
+ |---|---|
78
+ |Longformer before training| 14.78|
79
+ |Longformer after training| 3.10|
80
+
81
+ ## 致谢
82
+ 感谢东京工业大学 奥村·船越研究室 提供算力。
83
+
84
+ Thanks Okumula·Funakoshi Lab from Tokyo Institute of Technology who provides the devices and oppotunity for me to finish this project.
85
+
86
+