Teja-Gollapudi
commited on
Commit
路
c51d22f
1
Parent(s):
1477167
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,78 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# tinyroberta-mrqa
|
3 |
+
|
4 |
+
This is the *distilled* version of the [VMware/roberta-large-mrqa](https://huggingface.co/VMware/roberta-large-mrqa) model. This model has a comparable prediction quality to the base model and runs twice as fast.
|
5 |
+
|
6 |
+
## Overview
|
7 |
+
**Language model:** tinyroberta-mrqa
|
8 |
+
**Language:** English
|
9 |
+
**Downstream-task:** Extractive QA
|
10 |
+
**Training data:** MRQA
|
11 |
+
**Eval data:** MRQA
|
12 |
+
|
13 |
+
## Hyperparameters
|
14 |
+
|
15 |
+
### Distillation Hyperparameters
|
16 |
+
```
|
17 |
+
batch_size = 96
|
18 |
+
n_epochs = 4
|
19 |
+
base_LM_model = "deepset/tinyroberta-squad2-step1"
|
20 |
+
max_seq_len = 384
|
21 |
+
learning_rate = 3e-5
|
22 |
+
lr_schedule = LinearWarmup
|
23 |
+
warmup_proportion = 0.2
|
24 |
+
doc_stride = 128
|
25 |
+
max_query_length = 64
|
26 |
+
distillation_loss_weight = 0.75
|
27 |
+
temperature = 1.5
|
28 |
+
teacher = "VMware/roberta-large-mrqa"
|
29 |
+
```
|
30 |
+
### Finetunning Hyperparameters
|
31 |
+
|
32 |
+
We have finetuned on the MRQA training set.
|
33 |
+
```
|
34 |
+
learning_rate=1e-5,
|
35 |
+
num_train_epochs=3,
|
36 |
+
weight_decay=0.01,
|
37 |
+
per_device_train_batch_size=16,
|
38 |
+
n_gpus = 3
|
39 |
+
```
|
40 |
+
|
41 |
+
## Distillation
|
42 |
+
This model is inspired by deepset/tinyroberta-squad2.
|
43 |
+
We start with a base checkpoint of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) and perform further task prediction layer distillation on [VMware/roberta-large-mrqa](https://huggingface.co/VMware/roberta-large-mrqa).
|
44 |
+
We then fine-tune it on MRQA.
|
45 |
+
|
46 |
+
## Usage
|
47 |
+
|
48 |
+
### In Transformers
|
49 |
+
```python
|
50 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
51 |
+
|
52 |
+
model_name = "VMware/tinyroberta-mrqa"
|
53 |
+
|
54 |
+
# a) Get predictions
|
55 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
56 |
+
QA_input = {
|
57 |
+
'question': '',
|
58 |
+
'context': ''
|
59 |
+
}
|
60 |
+
res = nlp(QA_input)
|
61 |
+
|
62 |
+
# b) Load model & tokenizer
|
63 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
65 |
+
```
|
66 |
+
|
67 |
+
## Performance
|
68 |
+
|
69 |
+
We have Evaluated the model on the MRQA dev set and test set using SQUAD metrics.
|
70 |
+
|
71 |
+
```
|
72 |
+
eval exact match: 69.2
|
73 |
+
eval f1 score: 79.6
|
74 |
+
|
75 |
+
test exact match: 52.8
|
76 |
+
test f1 score: 63.4
|
77 |
+
|
78 |
+
```
|