OpenJMLA / modeling_maelm.py
sino
Update modeling_maelm.py
354c8fa
import json
import os
import pdb
from mmcv.cnn.bricks import padding
import torch
from torch import nn, einsum
from typing import Optional, Dict, Tuple
from .mae_vit import MAEViT
from .htsat import HTSAT_Swin_Transformer, create_htsat_model
from .LMdecoder import LMDecoder, LMDecoder_qlora
from .vision_transformer import VisionTransformer
from einops import rearrange, repeat
from einops_exts import rearrange_many
import inspect
from transformers.modeling_utils import PreTrainedModel
from .configuration_maelm import MAELMConfig
class ArgsHandler:
def __init__(self, module, funcname, fargs, fkargs):
self.fargs = list(fargs)
self.fkargs = fkargs
func = getattr(module, funcname)
fal_repr = f"{funcname}_argnames_list"
if (argns_list:=getattr(module, fal_repr, None)) is None:
self.func_sig = inspect.signature(func)
self.argnames_list = list(self.func_sig.parameters.keys())
setattr(module, fal_repr, self.argnames_list)
else:
self.argnames_list = argns_list
def get_arg(self, arg_name):
if arg_name in self.fkargs:
arg = self.fkargs[arg_name]
else:
arg = self.fargs[self.argnames_list.index(arg_name)]
return arg
def set_arg(self, arg_name, arg_value):
if arg_name in self.fkargs:
self.fkargs[arg_name] = arg_value
else:
self.fargs[self.argnames_list.index(arg_name)] = arg_value
def return_all_args(self,):
return tuple(self.fargs), self.fkargs
class SquaredReLU(nn.Module):
""" squared ReLU activation function"""
def __init__(self):
super().__init__()
def forward(self, x):
return torch.pow(torch.relu(x), 2)
def FeedForward(dim, out_dim, mult=4, act='gelu'):
"""
lucidrains implementation, slightly modified with the act parameter.
"""
acts = dict(
gelu=nn.GELU,
sqrelu=SquaredReLU,
relu=nn.ReLU
)
assert act in acts, f"act. can only be one of {acts.keys()}"
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
acts[act](),
nn.Linear(inner_dim, out_dim, bias=False)
)
class PerceiverAttentionLayer(nn.Module):
def __init__(
self,
*,
feat_dim,
latent_dim,
dim_head=64,
heads=8
):
super().__init__()
self.scale = dim_head ** -0.5
self.heads = heads
self.dim_head = dim_head
inner_dim = dim_head * heads
# trainable components of PerceiverAttentionLayer
self.norm_media = nn.LayerNorm(feat_dim)
self.norm_latents = nn.LayerNorm(latent_dim)
self.to_q = nn.Linear(latent_dim, inner_dim, bias=False)
self.to_k = nn.Linear(feat_dim, inner_dim, bias=False)
self.to_v = nn.Linear(feat_dim, inner_dim, bias=False)
self.to_out = nn.Linear(inner_dim, latent_dim, bias=False)
def forward(self, features, latents):
"""
Latent vectors are cross-attending to the visual features x.
:param x: Tensor (n_batch, n_features, dim)
visual features
:param latents: Tensor (n_batch, n_latents, dim)
latent learnt vectors from which the queries are computed.
Actually the same, just replicated in n_batch and n_frames dimension.
:return: Tensor (n_batch, n_latents, dim)
"""
assert features.ndim == 3
assert latents.ndim == 3
assert features.shape[0] == latents.shape[0]
#assert features.shape[2] == latents.shape[2]
n_heads = self.heads
n_batch, n_features, dim = features.shape
n_queries = latents.shape[1]
# layer normalization, as usual
x = self.norm_media(features)
latents = self.norm_latents(latents)
# queries
# compute the queries from the latents, for all attention heads simultaneously.
q = self.to_q(latents)
q = rearrange(q, 'b q (h d) -> b h q d', h=n_heads)
assert q.shape == torch.Size([n_batch, n_heads, n_queries, self.dim_head])
# keys and values for all attention heads
'''
kv_input = torch.cat((x, latents), dim=-2)
n_features_latents = n_features + n_queries
'''
kv_input = x
n_features_latents = n_features
# keys, values
k = self.to_k(kv_input)
v = self.to_v(kv_input)
# batch, features, (heads, dim)
# split so we have an extra dimension for the heads
# q, k, v = rearrange_many((q, k, v), 'b t n (h d) -> b h t n d', h=h)
k, v = rearrange_many((k, v), 'b f (h d) -> b h f d', h=n_heads)
assert v.shape == torch.Size([n_batch, n_heads, n_features_latents, self.dim_head])
# scale queries?
q = q * self.scale
# attention
# attention scores
# sim = einsum('... i d, ... j d -> ... i j', q, k)
sim = einsum('b h q d, b h f d -> b h q f', q, k)
# Is this for numerical stability? Does not affect the result of the softmax operation
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
alphas = sim.softmax(dim=-1)
# out = einsum('... i j, ... j d -> ... i d', alphas, v)
out = einsum('b h q f, b h f v -> b h q v', alphas, v)
# out = rearrange(out, 'b h t n d -> b t n (h d)', h=h)
out = rearrange(out, 'b h q v -> b q (h v)')
return self.to_out(out)
class MAEForCausalLM(PreTrainedModel):
"""
Args:
backbone (dict): Config dict for encoder. Defaults to None.
neck (dict): Config dict for encoder. Defaults to None.
head (dict): Config dict for loss functions. Defaults to None.
init_cfg (dict, optional): Config dict for weight initialization.
Defaults to None.
"""
config_class = MAELMConfig
def __init__(self, config: MAELMConfig) -> None:
super().__init__(config)
backbone = config.backbone
assert backbone is not None
bk_name = backbone.pop('name')
self.bk_name = bk_name
if bk_name == 'MAEViT':
ckpt_path = backbone.pop('ckpt') if 'ckpt' in backbone else None
self.backbone = MAEViT(**backbone)
#if ckpt_path is not None:
# ckpt = torch.load( ckpt_path,'cpu')
# self.backbone.load_state_dict(ckpt['state_dict'])
elif bk_name == 'HTSAT':
ckpt_path = backbone.pop('ckpt') if 'ckpt' in backbone else None
self.backbone = create_htsat_model(backbone)
if ckpt_path is not None:
ckpt = torch.load( ckpt_path,'cpu')
self.backbone.load_state_dict(ckpt['state_dict'])
elif bk_name == 'qformer':
raise NotImplemented
else:
raise NotImplemented
# neck["num_patches"] = self.backbone.num_patches
# neck["patch_resolution"] = self.backbone.patch_resolution
neck = config.neck
assert neck is not None
nk_name = neck.pop('name')
if nk_name == 'LMDecoder':
self.neck = LMDecoder(**neck)
elif nk_name == 'LMDecoder_qlora':
self.neck = LMDecoder_qlora(**neck)
else:
raise NotImplemented
self.config = self.neck.LMconfig # TODO
'''
self.ae_proj = nn.Linear(
768, self.config.hidden_size
)
'''
## TODO
#self.neck.lm.apply(lambda m:m.gradient_checkpointing=True)
self.neck.lm.model.gradient_checkpointing = False
self.register_buffer('ones', torch.ones((1,4096), dtype=torch.long), persistent=False)
self.graft_adapter()
self.init_weights()
# float32 --> bfloat16
for p in self.parameters():
p.data = p.data.to(torch.bfloat16)
#if config.resume_from_checkpoint is not None:
# drain_loader = True
# accelerator.load_state(config.resume_from_checkpoint, load_module_strict=False)
# # start_epoch, start_step, all_step = [int(_.split('_')[1]) for _ in args.resume_from_checkpoint.split('/')[-2].split('-')]
#elif config.resume_from_pth is not None:
# print(f'###########loading##########{config.resume_from_pth}###########loading##########')
# ckpt = torch.load(config.resume_from_pth, map_location='cpu')
# ckpt_copy = {k[7:]: v for k, v in ckpt.items()}
# self.load_state_dict(ckpt_copy, strict=False)
# print(f'###########loaded##########{config.resume_from_pth}###########loaded##########')
if False:
self.patch_llm()
self.first_run = True
def graft_adapter(self):
adapter_latent_len = 32
self.adapter_latent_len = adapter_latent_len
self.adapter_latent = nn.Parameter(torch.rand((1,adapter_latent_len, self.config.hidden_size), \
dtype=torch.float))
resampler_latent_len = 32
self.resampler_latent_len = resampler_latent_len
self.resampler_latent = nn.Parameter(torch.rand((1,resampler_latent_len, self.config.hidden_size), \
dtype=torch.float))
## TODO
# self.adapter.pre_bn = torch.nn.BatchNorm1d(4096, affine=True)
self.adapter = nn.ModuleList([])
ff_mult = 4
heads=8
dim_head=512
act='gelu'
lm_dim = self.config.hidden_size
if self.bk_name == 'HTSAT':
feat_dim = 1024
depth = len(self.backbone.layers[2].blocks)
else:
feat_dim = 768
depth = int(len(self.neck.lm.model.layers)/2) # 16
for idx in range(depth):
self.adapter.append(nn.ModuleList([
Adapter(input_size=self.config.hidden_size),
# PerceiverAttentionLayer(feat_dim=feat_dim, latent_dim=lm_dim, dim_head=dim_head, heads=heads),
# FeedForward(dim=lm_dim, out_dim=lm_dim, mult=1, act=act),
#FeedForward(dim=self.dim, out_dim=768, mult=ff_mult, act=act) if idx != depth-1 else nn.Identity()
]))
self.samplers = nn.ModuleList([]) # add
for _ in range(3):
self.samplers.append(nn.ModuleList([
PerceiverAttentionLayer(feat_dim=feat_dim, latent_dim=lm_dim, dim_head=64, heads=heads),
FeedForward(dim=lm_dim, out_dim=lm_dim, mult=4),
]))
self.norm = nn.LayerNorm(lm_dim)
# self.agate_list = nn.ParameterList([])
# for i in range(len(self.neck.lm.model.layers)):
# self.agate_list.append(nn.Parameter(torch.zeros(lm_dim)))
def init_weights(self):
try:
super().init_weights()
except:
pass
# import traceback
# traceback.print_exc()
if getattr(self, 'adapter_latent', None) is not None:
self.adapter_latent.data.normal_(mean=0.0, std=0.02)
if getattr(self, 'resampler_latent', None) is not None:
self.adapter_latent.data.normal_(mean=0.0, std=0.02)
def forward_resampler(self, x):
# b, 768, 512
latents = repeat(self.resampler_latent, 'b n d -> (bs b) n d', bs=x.shape[0])
for attn, ff in self.samplers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
v2t_feats = self.norm(latents) #
# v2t_atts = torch.ones(v2t_feats.shape[:2], dtype=torch.long, device=v2t_feats.device)
return v2t_feats # bs, 32, dim_llm
def hook_adapter(self, audio_embedding, lm, v2t_feats):
class PHooker:
# model = self.backbone
# mgtr = self.backbone.forward_generator(spectrogram)
adapter = self.adapter
y = v2t_feats
handles_list = list()
cnter = 0
def layer_prehook(self, m, margs, mkargs):
ahl = ArgsHandler(m, 'forward', margs, mkargs)
# print(self.cnter)
# if self.cnter>=16:
# self.cnter+=1
# return None
adapt = self.adapter[self.cnter][0]
hs = ahl.get_arg("hidden_states")
adapter_residual = hs
neo_hs = adapt(hs, adapter_residual)
self.cnter+=1
ahl.set_arg("hidden_states", neo_hs)
return ahl.return_all_args()
def first_layer_prehook(self, m, margs, mkargs):
ahl = ArgsHandler(m, 'forward', margs, mkargs)
neo_lm_latents = self.y # torch.Size([128, 32, 4096])
hs = ahl.get_arg("hidden_states") # torch.Size([128, 87, 4096])
hs_msk = self.lm_ahl.get_arg("input_ids") < 0 # torch.Size([128, 87]) [False,, True*32, False,,]
# __import__('pdb').set_trace()
neo_hs = hs.masked_scatter(hs_msk.unsqueeze(-1), neo_lm_latents) # resampler hooker直接替换
ahl.set_arg("hidden_states", neo_hs)
return ahl.return_all_args()
def lm_prehook(self, m, margs, mkargs):
self.lm_ahl = ArgsHandler(m, 'forward', margs, mkargs)
return None
def last_layer_hook(self, m, margs, mkargs):
# __import__('pdb').set_trace()
self.cnter = 0
if getattr(lm,'phooker',False):
for _ in lm.phooker.handles_list:
_.remove()
del lm.phooker
lm.phooker = None
phooker = PHooker()
phooker.handles_list.append(lm.register_forward_pre_hook(phooker.lm_prehook, with_kwargs=True))
# 第一层插入
phooker.handles_list.append(lm.model.layers[0].register_forward_pre_hook(phooker.first_layer_prehook, with_kwargs=True))
for ii in range(1,len(lm.model.layers),2):
l = lm.model.layers[ii]
handle = l.register_forward_pre_hook(phooker.layer_prehook, with_kwargs=True)
phooker.handles_list.append(handle)
phooker.handles_list.append(lm.model.layers[-1].register_forward_pre_hook(phooker.last_layer_hook, with_kwargs=True))
lm.phooker = phooker
return None
def prepare_ids(self, batch, audio_ids):
toker = self.neck.tokenizer
# for idx, l in enumerate(self.neck.lm.model.layers):
# l.agate = self.agate_list[idx].clone() ## should clone the parameter
with torch.no_grad():
input_ids = batch['input_ids']
att_msk = batch['attention_mask']
au_crds = batch['audio_crds']
ans_crds = batch['ans_crds']
bsz = input_ids.shape[0]
# __import__('pdb').set_trace()
## TODO
merged_ids, merged_msk, label_ids = list(), list(), list()
for i in range(bsz):
# cur_merged_ids = torch.cat([input_ids[i,:au_crds[i]], -1 * audio_ids[i] -1, input_ids[i,au_crds[i]:]])
cur_merged_ids = torch.cat([ -1 * audio_ids[i] -1, input_ids[i,au_crds[i]:]])
# cur_au_msk = self.ones[:,:audio_ids.shape[1]][0].clone().type_as(att_msk).detach()
cur_au_msk = torch.ones(audio_ids.shape[1], device=audio_ids.device)
# cur_merged_msk = torch.cat([att_msk[i,:au_crds[i]], cur_au_msk, att_msk[i,au_crds[i]:]])
cur_merged_msk = torch.cat([ cur_au_msk, att_msk[i,au_crds[i]:]])
cur_label_ids = cur_merged_ids.clone().detach()
cur_label_ids[:audio_ids.shape[1]+ans_crds[i]] = -100
merged_ids.append(cur_merged_ids)
merged_msk.append(cur_merged_msk)
label_ids.append(cur_label_ids)
merged_ids = torch.stack(merged_ids, dim=0)
merged_msk = torch.stack(merged_msk, dim=0)
label_ids = torch.stack(label_ids, dim=0)
assert merged_ids.shape[0] == bsz
assert merged_ids.shape == merged_msk.shape
label_msk = merged_msk.clone()
assert label_msk.shape == merged_msk.shape
assert merged_msk[:,-1].max() == 1
for i in range(len(ans_crds)):
label_ids[i,:audio_ids.shape[1]+ans_crds[i]].fill_(-100)
merged_labels = label_ids
merged_ids[merged_ids.eq(-100)] = toker.pad_token_id
return merged_ids, merged_msk, merged_labels
def forward(self, batch, **kwargs):
"""Forward computation during training.
Args:
img (torch.Tensor): Input images of shape (N, C, H, W).
kwargs: Any keyword arguments to be used to forward.
Returns:
Dict[str, torch.Tensor]: A dictionary of loss components.
"""
bsz = len(batch['input_ids'])
device = batch['input_ids'].device
float_type = next(self.parameters()).dtype
spectrogram = batch['spectrogram'].type(float_type)
audio_embedding = self.backbone(spectrogram).detach() # b, 768, 512
resampler_feats = self.forward_resampler(audio_embedding)
self.hook_adapter(audio_embedding, self.neck.lm, resampler_feats) # add hook
# self.hook_resapmler(resampler_feats, self.neck.lm)
audio_ids = torch.arange(self.adapter_latent.shape[1]).unsqueeze(0).repeat((bsz, 1)).long().to(device)
assert audio_ids.max() < 100
merged_ids, merged_msk, merged_labels = self.prepare_ids(batch, audio_ids)
try:
assert merged_ids.shape == merged_labels.shape
outs = self.neck(input_ids=merged_ids.contiguous().long(),
flatten_embs=self.adapter_latent.flatten(0,1), # 32, 4096
# flatten_embs = resampler_feats.flatten(0,1), # b, 32, 4096
attention_mask=merged_msk.contiguous().long(),
labels=merged_labels.contiguous().long(), use_cache=False)
except Exception as e:
import traceback
traceback.print_exc()
__import__('remote_pdb').set_trace()
#outs.hidden_logits = self.hidden_logits
## TODO
if eval(os.environ.get("doing_eval", 'False')):
outs.merged_ids = merged_ids.cpu()
outs.merged_labels = merged_labels.cpu()
return outs
def forward_test(self, batch, **kwargs):
"""Forward computation during training.
Args:
img (torch.Tensor): Input images of shape (N, C, H, W).
kwargs: Any keyword arguments to be used to forward.
Returns:
Dict[str, torch.Tensor]: A dictionary of loss components.
"""
bsz = len(batch['input_ids'])
device = batch['input_ids'].device
float_type = next(self.parameters()).dtype
spectrogram = batch['spectrogram'].type(float_type)
audio_embedding = self.backbone(spectrogram).detach() # b, 768, 512
resampler_feats = self.forward_resampler(audio_embedding)
self.hook_adapter(audio_embedding, self.neck.lm, resampler_feats) # add hook
# self.extract_features(batch, self.neck.lm)
audio_ids = torch.arange(self.adapter_latent.shape[1]).unsqueeze(0).repeat((bsz, 1)).long().to(device)
assert audio_ids.max() < 100
merged_ids, merged_msk, merged_labels = self.prepare_ids(batch, audio_ids)
au_crds = batch['audio_crds']
ans_crds = batch['ans_crds']
aid_len = audio_ids.shape[-1]
toker = self.neck.tokenizer
with torch.no_grad():
## TODO
pad_token = toker.encode(self.neck.tokenizer.eos_token)[0]
padded_merged_ids = self.ones[:, :aid_len+max(ans_crds)].repeat(bsz, 1).clone().detach() * pad_token
for i in range(bsz):
# for i in range(1):
assert au_crds[i] <= ans_crds[i]
cur_ids = merged_ids[i][:aid_len+ans_crds[i]]
padded_merged_ids[i][max(ans_crds)-ans_crds[i]:] = cur_ids
# __import__('pdb').set_trace()
outs = self.neck.generate(padded_merged_ids, self.adapter_latent.flatten(0,1))
#outs.hidden_logits = self.hidden_logits
return outs
import torch
from torch import nn
from transformers.activations import ACT2FN
class Adapter(nn.Module):
"""
Implementation of a sequential bottleneck adapter block.
"""
def __init__(
self,
input_size,
down_sample=None,
):
super().__init__()
self.input_size = input_size
# if a downsample size is not passed, we just half the size of the original input
self.down_sample = down_sample
if down_sample is None:
self.down_sample = self.input_size // 2
self.adapter_norm_before = nn.LayerNorm(self.input_size)
self.adapter_down = nn.Linear(self.input_size, self.down_sample)
self.non_linearity = ACT2FN["silu"]
# Up projection to input size
self.adapter_up = nn.Linear(self.down_sample, self.input_size)
# Additional scaling factor (from He et al. (2021))
self.scaling = nn.Parameter(torch.ones(1))
self.adapter_down.apply(self._init_weights)
self.adapter_up.apply(self._init_weights)
def forward(self, x, residual_input): # , residual_input=None):
down = self.non_linearity(self.adapter_down(self.adapter_norm_before(x)))
up = self.adapter_up(down)
up = up * self.scaling
output = up
output = output + residual_input
return output
@staticmethod
def _init_weights(module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, nn.Embedding)):
# std defaults to 0.02, this might need to be changed
module.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()