File size: 6,528 Bytes
ff4fdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import math
from functools import reduce
from operator import mul
from ipdb import set_trace

import torch
import torch.nn.functional as F
import torch.nn as nn
from mmcls.models.backbones import VisionTransformer as _VisionTransformer
from mmcls.models.utils import to_2tuple
from mmcv.cnn.bricks.transformer import PatchEmbed
from torch.nn.modules.batchnorm import _BatchNorm


def build_2d_sincos_position_embedding(patches_resolution,
                                       embed_dims,
                                       temperature=10000.,
                                       cls_token=False):
    """The function is to build position embedding for model to obtain the
    position information of the image patches."""

    if isinstance(patches_resolution, int):
        patches_resolution = (patches_resolution, patches_resolution)

    h, w = patches_resolution
    grid_w = torch.arange(w, dtype=torch.float32)
    grid_h = torch.arange(h, dtype=torch.float32)
    grid_w, grid_h = torch.meshgrid(grid_w, grid_h)
    assert embed_dims % 4 == 0, \
        'Embed dimension must be divisible by 4.'
    pos_dim = embed_dims // 4

    omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
    omega = 1. / (temperature**omega)
    out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
    out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])

    pos_emb = torch.cat(
        [
            torch.sin(out_w),
            torch.cos(out_w),
            torch.sin(out_h),
            torch.cos(out_h)
        ],
        dim=1,
    )[None, :, :]

    if cls_token:
        cls_token_pe = torch.zeros([1, 1, embed_dims], dtype=torch.float32)
        pos_emb = torch.cat([cls_token_pe, pos_emb], dim=1)

    return pos_emb


class VisionTransformer(_VisionTransformer):
    """Vision Transformer.

    A pytorch implement of: `An Images is Worth 16x16 Words: Transformers for
    Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_.

    Part of the code is modified from:
    `<https://github.com/facebookresearch/moco-v3/blob/main/vits.py>`_.

    Args:
        stop_grad_conv1 (bool, optional): whether to stop the gradient of
            convolution layer in `PatchEmbed`. Defaults to False.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters. Defaults to -1.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Defaults to False.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    arch_zoo = {
        **dict.fromkeys(
            ['mocov3-s', 'mocov3-small'], {
                'embed_dims': 384,
                'num_layers': 12,
                'num_heads': 12,
                'feedforward_channels': 1536,
            }),
        **dict.fromkeys(
            ['b', 'base'], {
                'embed_dims': 768,
                'num_layers': 12,
                'num_heads': 12,
                'feedforward_channels': 3072
            }),
    }

    def __init__(self,
                 stop_grad_conv1=False,
                 frozen_stages=-1,
                 norm_eval=False,
                 init_cfg=None,
                 **kwargs):
        super(VisionTransformer, self).__init__(init_cfg=init_cfg,)
        self.patch_size = kwargs['patch_size']
        self.frozen_stages = frozen_stages
        self.norm_eval = norm_eval
        self.init_cfg = init_cfg
        
        
        if isinstance(self.patch_embed, PatchEmbed):
            if stop_grad_conv1:
                self.patch_embed.projection.weight.requires_grad = False
                self.patch_embed.projection.bias.requires_grad = False

        self._freeze_stages()

    def init_weights(self):
        super(VisionTransformer, self).init_weights()

        if not (isinstance(self.init_cfg, dict)
                and self.init_cfg['type'] == 'Pretrained'):

            # Use fixed 2D sin-cos position embedding
            pos_emb = build_2d_sincos_position_embedding(
                patches_resolution=self.patch_resolution,
                embed_dims=self.embed_dims,
                cls_token=True)
            self.pos_embed.data.copy_(pos_emb)
            self.pos_embed.requires_grad = False

            # xavier_uniform initialization for PatchEmbed
            if isinstance(self.patch_embed, PatchEmbed):
                val = math.sqrt(
                    6. / float(3 * reduce(mul, to_2tuple(self.patch_size), 1) +
                               self.embed_dims))
                nn.init.uniform_(self.patch_embed.projection.weight, -val, val)
                nn.init.zeros_(self.patch_embed.projection.bias)

            # initialization for linear layers
            for name, m in self.named_modules():
                if isinstance(m, nn.Linear):
                    if 'qkv' in name:
                        # treat the weights of Q, K, V separately
                        val = math.sqrt(
                            6. /
                            float(m.weight.shape[0] // 3 + m.weight.shape[1]))
                        nn.init.uniform_(m.weight, -val, val)
                    else:
                        nn.init.xavier_uniform_(m.weight)
                    nn.init.zeros_(m.bias)
            nn.init.normal_(self.cls_token, std=1e-6)

    def _freeze_stages(self):
        """Freeze patch_embed layer, some parameters and stages."""
        if self.frozen_stages >= 0:
            self.patch_embed.eval()
            for param in self.patch_embed.parameters():
                param.requires_grad = False

            self.cls_token.requires_grad = False
            self.pos_embed.requires_grad = False

        for i in range(1, self.frozen_stages + 1):
            m = self.layers[i - 1]
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

            if i == (self.num_layers) and self.final_norm:
                for param in getattr(self, 'norm1').parameters():
                    param.requires_grad = False

    def train(self, mode=True):
        super(VisionTransformer, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                # trick: eval have effect on BatchNorm only
                if isinstance(m, _BatchNorm):
                    m.eval()