File size: 22,567 Bytes
a62a2b1
 
 
 
 
 
 
354c8fa
 
 
 
a62a2b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b6f771
 
 
a62a2b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b6f771
 
 
 
 
 
 
 
 
 
a62a2b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import json
import os
import pdb
from mmcv.cnn.bricks import padding
import torch
from torch import nn, einsum
from typing import Optional, Dict, Tuple
from .mae_vit import MAEViT
from .htsat import HTSAT_Swin_Transformer, create_htsat_model
from .LMdecoder import LMDecoder, LMDecoder_qlora
from .vision_transformer import VisionTransformer
from einops import rearrange, repeat
from einops_exts import rearrange_many
import inspect

from transformers.modeling_utils import PreTrainedModel
from .configuration_maelm import MAELMConfig

class ArgsHandler:
    def __init__(self, module, funcname, fargs, fkargs):
        self.fargs = list(fargs)
        self.fkargs = fkargs
        func = getattr(module, funcname)
        fal_repr = f"{funcname}_argnames_list"
        if (argns_list:=getattr(module, fal_repr, None)) is None:
            self.func_sig = inspect.signature(func)
            self.argnames_list = list(self.func_sig.parameters.keys())
            setattr(module, fal_repr, self.argnames_list)
        else:
            self.argnames_list = argns_list

    def get_arg(self, arg_name):
        if arg_name in self.fkargs:
            arg = self.fkargs[arg_name]
        else:
            arg = self.fargs[self.argnames_list.index(arg_name)]
        return arg

    def set_arg(self, arg_name, arg_value):
        if arg_name in self.fkargs:
            self.fkargs[arg_name] = arg_value
        else:
            self.fargs[self.argnames_list.index(arg_name)] = arg_value

    def return_all_args(self,):
        return tuple(self.fargs), self.fkargs

class SquaredReLU(nn.Module):
    """ squared ReLU activation function"""
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return torch.pow(torch.relu(x), 2)

def FeedForward(dim, out_dim, mult=4, act='gelu'):
    """
    lucidrains implementation, slightly modified with the act parameter.
    """

    acts = dict(
        gelu=nn.GELU,
        sqrelu=SquaredReLU,
        relu=nn.ReLU
    )

    assert act in acts, f"act. can only be one of {acts.keys()}"

    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        acts[act](),
        nn.Linear(inner_dim, out_dim, bias=False)
    )


class PerceiverAttentionLayer(nn.Module):
    def __init__(
            self,
            *,
            feat_dim,
            latent_dim,
            dim_head=64,
            heads=8
        ):
        super().__init__()
        self.scale = dim_head ** -0.5
        self.heads = heads
        self.dim_head = dim_head

        inner_dim = dim_head * heads

        # trainable components of PerceiverAttentionLayer
        self.norm_media = nn.LayerNorm(feat_dim)
        self.norm_latents = nn.LayerNorm(latent_dim)

        self.to_q = nn.Linear(latent_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(feat_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(feat_dim, inner_dim, bias=False)
        self.to_out = nn.Linear(inner_dim, latent_dim, bias=False)

    def forward(self, features, latents):
        """
        Latent vectors are cross-attending to the visual features x.
        :param x:       Tensor (n_batch, n_features, dim)
                        visual features
        :param latents: Tensor (n_batch, n_latents, dim)
                        latent learnt vectors from which the queries are computed.
                        Actually the same, just replicated in n_batch and n_frames dimension.
        :return:        Tensor (n_batch, n_latents, dim)
        """
        assert features.ndim == 3
        assert latents.ndim == 3
        assert features.shape[0] == latents.shape[0]
        #assert features.shape[2] == latents.shape[2]

        n_heads = self.heads
        n_batch, n_features, dim = features.shape
        n_queries = latents.shape[1]

        # layer normalization, as usual
        x = self.norm_media(features)
        latents = self.norm_latents(latents)

        # queries
        # compute the queries from the latents, for all attention heads simultaneously.
        q = self.to_q(latents)
        q = rearrange(q, 'b q (h d) -> b h q d', h=n_heads)
        assert q.shape == torch.Size([n_batch, n_heads, n_queries, self.dim_head])

        # keys and values for all attention heads
            
        '''
        kv_input = torch.cat((x, latents), dim=-2)
        n_features_latents = n_features + n_queries
        '''

        kv_input = x
        n_features_latents = n_features

        # keys, values
        k = self.to_k(kv_input)
        v = self.to_v(kv_input)
        # batch, features, (heads, dim)

        # split so we have an extra dimension for the heads
        # q, k, v = rearrange_many((q, k, v), 'b t n (h d) -> b h t n d', h=h)
        k, v = rearrange_many((k, v), 'b f (h d) -> b h f d', h=n_heads)
        assert v.shape == torch.Size([n_batch, n_heads, n_features_latents, self.dim_head])

        # scale queries?
        q = q * self.scale

        # attention

        # attention scores
        # sim = einsum('... i d, ... j d  -> ... i j', q, k)
        sim = einsum('b h q d, b h f d -> b h q f', q, k)

        # Is this for numerical stability? Does not affect the result of the softmax operation
        sim = sim - sim.amax(dim=-1, keepdim=True).detach()
        alphas = sim.softmax(dim=-1)

        # out = einsum('... i j, ... j d -> ... i d', alphas, v)
        out = einsum('b h q f, b h f v -> b h q v', alphas, v)

        # out = rearrange(out, 'b h t n d -> b t n (h d)', h=h)
        out = rearrange(out, 'b h q v -> b q (h v)')
        return self.to_out(out)


class MAEForCausalLM(PreTrainedModel):
    """

    Args:
        backbone (dict): Config dict for encoder. Defaults to None.
        neck (dict): Config dict for encoder. Defaults to None.
        head (dict): Config dict for loss functions. Defaults to None.
        init_cfg (dict, optional): Config dict for weight initialization.
            Defaults to None.
    """
    
    config_class = MAELMConfig

    def __init__(self, config: MAELMConfig) -> None:
        super().__init__(config)
        backbone = config.backbone
        assert backbone is not None
        bk_name = backbone.pop('name')
        self.bk_name = bk_name
        if bk_name == 'MAEViT':
            ckpt_path = backbone.pop('ckpt') if 'ckpt' in backbone else None
            self.backbone = MAEViT(**backbone)
            #if ckpt_path is not None:
            #    ckpt = torch.load( ckpt_path,'cpu')
            #    self.backbone.load_state_dict(ckpt['state_dict'])
                
        elif bk_name == 'HTSAT':
            ckpt_path = backbone.pop('ckpt') if 'ckpt' in backbone else None
            self.backbone = create_htsat_model(backbone)
            if ckpt_path is not None:
                ckpt = torch.load( ckpt_path,'cpu')
                self.backbone.load_state_dict(ckpt['state_dict'])
        elif bk_name == 'qformer':
            raise NotImplemented        
        else:
            raise NotImplemented



        # neck["num_patches"] = self.backbone.num_patches
        # neck["patch_resolution"] = self.backbone.patch_resolution
        neck = config.neck
        assert neck is not None
        nk_name = neck.pop('name')
        if nk_name == 'LMDecoder':
            self.neck = LMDecoder(**neck)
        elif nk_name == 'LMDecoder_qlora':
            self.neck = LMDecoder_qlora(**neck)
        else: 
            raise NotImplemented
        self.config = self.neck.LMconfig # TODO

        '''
        self.ae_proj = nn.Linear(
            768,  self.config.hidden_size
        )
        '''
        
        ## TODO

        #self.neck.lm.apply(lambda m:m.gradient_checkpointing=True)
        self.neck.lm.model.gradient_checkpointing = False

        self.register_buffer('ones', torch.ones((1,4096), dtype=torch.long), persistent=False)
        self.graft_adapter()
        self.init_weights()
        # float32 --> bfloat16
        for p in self.parameters():
            p.data = p.data.to(torch.bfloat16)
        #if config.resume_from_checkpoint is not None:  
        #    drain_loader = True
        #    accelerator.load_state(config.resume_from_checkpoint, load_module_strict=False)
        #    # start_epoch, start_step, all_step = [int(_.split('_')[1]) for _ in args.resume_from_checkpoint.split('/')[-2].split('-')]
        #elif config.resume_from_pth is not None:
        #    print(f'###########loading##########{config.resume_from_pth}###########loading##########')
        #    ckpt = torch.load(config.resume_from_pth, map_location='cpu')
        #    ckpt_copy = {k[7:]: v for k, v in ckpt.items()}
        #    self.load_state_dict(ckpt_copy, strict=False)
        #    print(f'###########loaded##########{config.resume_from_pth}###########loaded##########')

        if False:
            self.patch_llm()
        self.first_run = True
    
    def graft_adapter(self):
        adapter_latent_len = 32
        self.adapter_latent_len = adapter_latent_len
        self.adapter_latent = nn.Parameter(torch.rand((1,adapter_latent_len, self.config.hidden_size), \
                                                     dtype=torch.float))
        resampler_latent_len = 32
        self.resampler_latent_len = resampler_latent_len
        self.resampler_latent = nn.Parameter(torch.rand((1,resampler_latent_len, self.config.hidden_size), \
                                                     dtype=torch.float))
        ## TODO
        # self.adapter.pre_bn = torch.nn.BatchNorm1d(4096, affine=True)

        self.adapter = nn.ModuleList([])
        
        ff_mult = 4
        heads=8
        dim_head=512
        act='gelu'

        lm_dim = self.config.hidden_size
        if self.bk_name == 'HTSAT':
            feat_dim = 1024
            depth = len(self.backbone.layers[2].blocks)
        else:
            feat_dim = 768
            depth = int(len(self.neck.lm.model.layers)/2) # 16
        for idx in range(depth):
            self.adapter.append(nn.ModuleList([
                Adapter(input_size=self.config.hidden_size),
                # PerceiverAttentionLayer(feat_dim=feat_dim, latent_dim=lm_dim, dim_head=dim_head, heads=heads),
                # FeedForward(dim=lm_dim, out_dim=lm_dim, mult=1, act=act),
                #FeedForward(dim=self.dim, out_dim=768, mult=ff_mult, act=act) if idx != depth-1 else nn.Identity()
            ])) 

        self.samplers = nn.ModuleList([]) # add
        for _ in range(3):
            self.samplers.append(nn.ModuleList([
                PerceiverAttentionLayer(feat_dim=feat_dim, latent_dim=lm_dim, dim_head=64, heads=heads),
                FeedForward(dim=lm_dim, out_dim=lm_dim, mult=4),
            ]))
        self.norm = nn.LayerNorm(lm_dim)

        # self.agate_list = nn.ParameterList([])
        # for i in range(len(self.neck.lm.model.layers)):
        #     self.agate_list.append(nn.Parameter(torch.zeros(lm_dim)))


        
    def init_weights(self):
        try:
            super().init_weights()
        except:
            pass
            # import traceback
            # traceback.print_exc()
        if getattr(self, 'adapter_latent', None) is not None:
            self.adapter_latent.data.normal_(mean=0.0, std=0.02)
        if getattr(self, 'resampler_latent', None) is not None:
            self.adapter_latent.data.normal_(mean=0.0, std=0.02)

    def forward_resampler(self, x):
        # b, 768, 512
        latents = repeat(self.resampler_latent, 'b n d -> (bs b) n d', bs=x.shape[0])
        for attn, ff in self.samplers:
            latents = attn(x, latents) + latents
            latents = ff(latents) + latents
        v2t_feats = self.norm(latents) # 
        # v2t_atts = torch.ones(v2t_feats.shape[:2], dtype=torch.long, device=v2t_feats.device)
        return v2t_feats # bs, 32, dim_llm


    def hook_adapter(self, audio_embedding, lm, v2t_feats):
        
        class PHooker:
            # model = self.backbone
            # mgtr = self.backbone.forward_generator(spectrogram)
            adapter = self.adapter
            y = v2t_feats
            handles_list = list()
            cnter = 0
            def layer_prehook(self, m, margs, mkargs):
                ahl = ArgsHandler(m, 'forward', margs, mkargs)
                
                # print(self.cnter)
                
                # if self.cnter>=16:
                #     self.cnter+=1
                #     return None
                adapt = self.adapter[self.cnter][0]

                hs = ahl.get_arg("hidden_states")
                adapter_residual = hs
                neo_hs = adapt(hs, adapter_residual)

                self.cnter+=1
                ahl.set_arg("hidden_states", neo_hs)
                return ahl.return_all_args()
            def first_layer_prehook(self, m, margs, mkargs):
                ahl = ArgsHandler(m, 'forward', margs, mkargs)
                neo_lm_latents = self.y #  torch.Size([128, 32, 4096])
                hs = ahl.get_arg("hidden_states") # torch.Size([128, 87, 4096])
                hs_msk = self.lm_ahl.get_arg("input_ids") < 0 # torch.Size([128, 87]) [False,, True*32, False,,]
                # __import__('pdb').set_trace()
                neo_hs = hs.masked_scatter(hs_msk.unsqueeze(-1), neo_lm_latents)  # resampler hooker直接替换
                ahl.set_arg("hidden_states", neo_hs)
                return ahl.return_all_args()

            def lm_prehook(self, m, margs, mkargs):
                self.lm_ahl = ArgsHandler(m, 'forward', margs, mkargs)
                return None
            def last_layer_hook(self, m, margs, mkargs):
                # __import__('pdb').set_trace()
                self.cnter = 0

        if getattr(lm,'phooker',False):
            for _ in lm.phooker.handles_list:
                _.remove()
            del lm.phooker
            lm.phooker = None
        phooker = PHooker()
        phooker.handles_list.append(lm.register_forward_pre_hook(phooker.lm_prehook, with_kwargs=True))
        # 第一层插入
        phooker.handles_list.append(lm.model.layers[0].register_forward_pre_hook(phooker.first_layer_prehook, with_kwargs=True))
       
        for ii in range(1,len(lm.model.layers),2):
            l = lm.model.layers[ii]
            handle = l.register_forward_pre_hook(phooker.layer_prehook, with_kwargs=True)
            phooker.handles_list.append(handle)
        phooker.handles_list.append(lm.model.layers[-1].register_forward_pre_hook(phooker.last_layer_hook, with_kwargs=True))
        lm.phooker = phooker 
        return None



    def prepare_ids(self, batch, audio_ids):
        toker = self.neck.tokenizer
        # for idx, l in enumerate(self.neck.lm.model.layers):
        #     l.agate = self.agate_list[idx].clone() ## should clone the parameter
         
        with torch.no_grad():
            
            input_ids = batch['input_ids']
            att_msk = batch['attention_mask']
            au_crds = batch['audio_crds']
            ans_crds = batch['ans_crds']
            bsz = input_ids.shape[0]
            # __import__('pdb').set_trace()
            ## TODO
            merged_ids, merged_msk, label_ids = list(), list(), list()
            for i in range(bsz):
                # cur_merged_ids = torch.cat([input_ids[i,:au_crds[i]], -1 * audio_ids[i] -1, input_ids[i,au_crds[i]:]])
                cur_merged_ids = torch.cat([ -1 * audio_ids[i] -1, input_ids[i,au_crds[i]:]])
                
                # cur_au_msk = self.ones[:,:audio_ids.shape[1]][0].clone().type_as(att_msk).detach()
                cur_au_msk = torch.ones(audio_ids.shape[1], device=audio_ids.device)
                # cur_merged_msk = torch.cat([att_msk[i,:au_crds[i]], cur_au_msk, att_msk[i,au_crds[i]:]])
                cur_merged_msk = torch.cat([ cur_au_msk, att_msk[i,au_crds[i]:]])
                cur_label_ids = cur_merged_ids.clone().detach()
                cur_label_ids[:audio_ids.shape[1]+ans_crds[i]] = -100

                merged_ids.append(cur_merged_ids)
                merged_msk.append(cur_merged_msk)
                label_ids.append(cur_label_ids)

            merged_ids = torch.stack(merged_ids, dim=0) 
            merged_msk = torch.stack(merged_msk, dim=0) 
            label_ids = torch.stack(label_ids, dim=0) 

            assert merged_ids.shape[0] == bsz
            assert merged_ids.shape == merged_msk.shape

            label_msk = merged_msk.clone()
            assert label_msk.shape == merged_msk.shape
            assert merged_msk[:,-1].max() == 1

            for i in range(len(ans_crds)):
                label_ids[i,:audio_ids.shape[1]+ans_crds[i]].fill_(-100)
            
             
            merged_labels = label_ids
            merged_ids[merged_ids.eq(-100)] = toker.pad_token_id

        return merged_ids, merged_msk, merged_labels

    def forward(self, batch, **kwargs):
        """Forward computation during training.

        Args:
            img (torch.Tensor): Input images of shape (N, C, H, W).
            kwargs: Any keyword arguments to be used to forward.
        Returns:
            Dict[str, torch.Tensor]: A dictionary of loss components.
        """
        bsz = len(batch['input_ids'])
        device = batch['input_ids'].device
        float_type = next(self.parameters()).dtype
        spectrogram = batch['spectrogram'].type(float_type)
        audio_embedding = self.backbone(spectrogram).detach() # b, 768, 512
        resampler_feats = self.forward_resampler(audio_embedding)
        self.hook_adapter(audio_embedding, self.neck.lm, resampler_feats) # add hook
        
        # self.hook_resapmler(resampler_feats, self.neck.lm)
        
        audio_ids = torch.arange(self.adapter_latent.shape[1]).unsqueeze(0).repeat((bsz, 1)).long().to(device)
        assert audio_ids.max() < 100
        merged_ids, merged_msk, merged_labels = self.prepare_ids(batch, audio_ids)
        
        try:
            assert merged_ids.shape == merged_labels.shape
            outs = self.neck(input_ids=merged_ids.contiguous().long(),
                    flatten_embs=self.adapter_latent.flatten(0,1), # 32, 4096
                    # flatten_embs = resampler_feats.flatten(0,1), # b, 32, 4096
                    attention_mask=merged_msk.contiguous().long(), 
                    labels=merged_labels.contiguous().long(), use_cache=False)
        except Exception as e:
            import traceback
            traceback.print_exc()
            __import__('remote_pdb').set_trace()
        #outs.hidden_logits = self.hidden_logits

        ## TODO
        if eval(os.environ.get("doing_eval", 'False')):
            outs.merged_ids = merged_ids.cpu()
            outs.merged_labels = merged_labels.cpu()

        return outs


    def forward_test(self, batch, **kwargs):
        """Forward computation during training.

        Args:
            img (torch.Tensor): Input images of shape (N, C, H, W).
            kwargs: Any keyword arguments to be used to forward.
        Returns:
            Dict[str, torch.Tensor]: A dictionary of loss components.
        """


        bsz = len(batch['input_ids'])
        device = batch['input_ids'].device
        float_type = next(self.parameters()).dtype
        spectrogram = batch['spectrogram'].type(float_type)
        audio_embedding = self.backbone(spectrogram).detach() # b, 768, 512
        resampler_feats = self.forward_resampler(audio_embedding)
        self.hook_adapter(audio_embedding, self.neck.lm, resampler_feats) # add hook
        # self.extract_features(batch, self.neck.lm)
        audio_ids = torch.arange(self.adapter_latent.shape[1]).unsqueeze(0).repeat((bsz, 1)).long().to(device)
        assert audio_ids.max() < 100

        merged_ids, merged_msk, merged_labels = self.prepare_ids(batch, audio_ids)
        au_crds = batch['audio_crds']
        ans_crds = batch['ans_crds']
        
        aid_len = audio_ids.shape[-1]
        

        toker = self.neck.tokenizer
        with torch.no_grad():

            ## TODO
            pad_token = toker.encode(self.neck.tokenizer.eos_token)[0]
            padded_merged_ids = self.ones[:, :aid_len+max(ans_crds)].repeat(bsz, 1).clone().detach() * pad_token
            for i in range(bsz):
            # for i in range(1):
                assert au_crds[i] <= ans_crds[i]
                cur_ids = merged_ids[i][:aid_len+ans_crds[i]]
                padded_merged_ids[i][max(ans_crds)-ans_crds[i]:] = cur_ids
        # __import__('pdb').set_trace()
        outs = self.neck.generate(padded_merged_ids, self.adapter_latent.flatten(0,1))
        #outs.hidden_logits = self.hidden_logits

        return outs



import torch
from torch import nn

from transformers.activations import ACT2FN

class Adapter(nn.Module):
    """
    Implementation of a sequential bottleneck adapter block.
    """
    def __init__(
        self,
        input_size,
        down_sample=None,
    ):
        super().__init__()

        self.input_size = input_size

        # if a downsample size is not passed, we just half the size of the original input
        self.down_sample = down_sample
        if down_sample is None:
            self.down_sample = self.input_size // 2

        self.adapter_norm_before = nn.LayerNorm(self.input_size)
        self.adapter_down = nn.Linear(self.input_size, self.down_sample)
        self.non_linearity = ACT2FN["silu"]

        # Up projection to input size
        self.adapter_up = nn.Linear(self.down_sample, self.input_size)

        # Additional scaling factor (from He et al. (2021))
        self.scaling = nn.Parameter(torch.ones(1))   

        self.adapter_down.apply(self._init_weights)
        self.adapter_up.apply(self._init_weights)

    def forward(self, x, residual_input):  # , residual_input=None):

        down = self.non_linearity(self.adapter_down(self.adapter_norm_before(x)))

        up = self.adapter_up(down)
        up = up * self.scaling
        output = up

        output = output + residual_input

        return output

    @staticmethod
    def _init_weights(module):
        """Initialize the weights."""
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # std defaults to 0.02, this might need to be changed
            module.weight.data.normal_(mean=0.0, std=0.02)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()