--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - minds14 metrics: - wer model-index: - name: whisper-small-hi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: minds14 type: minds14 config: en-US split: None args: en-US metrics: - name: Wer type: wer value: 23.117960877296976 --- # whisper-small-hi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6055 - Wer: 23.1180 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.1178 | 1.0 | 57 | 1.1225 | 115.5898 | | 0.7581 | 2.0 | 114 | 0.6572 | 50.2075 | | 0.3468 | 3.0 | 171 | 0.5129 | 27.6823 | | 0.221 | 4.0 | 228 | 0.4969 | 23.2365 | | 0.1407 | 5.0 | 285 | 0.5054 | 24.0071 | | 0.08 | 6.0 | 342 | 0.5423 | 25.3705 | | 0.0395 | 7.0 | 399 | 0.5861 | 22.1695 | | 0.0194 | 8.0 | 456 | 0.5858 | 24.3628 | | 0.0221 | 8.7719 | 500 | 0.6055 | 23.1180 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0