Upload 6 files
Browse files- dev.tsv +0 -0
- final-model.pt +3 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +526 -0
- weights.txt +0 -0
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d36b2ad45e1159e1fa953433b4d913a4af9c8103fc1ef8012d9f32645ff00f45
|
3 |
+
size 1140158181
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 15:50:17 0 0.0100 0.15425708817024494 0.060714565217494965 0.7787 0.8033 0.7908 0.7707
|
3 |
+
2 16:12:13 0 0.0100 0.08213652963048304 0.05180404335260391 0.8249 0.8572 0.8408 0.8224
|
4 |
+
3 16:34:11 0 0.0100 0.07016307590417552 0.04575943946838379 0.8564 0.8825 0.8693 0.8513
|
5 |
+
4 16:55:45 1 0.0100 0.06056221985322536 0.04747875779867172 0.8472 0.8787 0.8627 0.8453
|
6 |
+
5 17:17:21 0 0.0100 0.052649540430491894 0.03879784420132637 0.8726 0.9006 0.8864 0.8699
|
7 |
+
6 17:39:07 0 0.0100 0.047476279502849085 0.03874654322862625 0.8813 0.9006 0.8908 0.873
|
8 |
+
7 18:00:59 0 0.0100 0.04204823572638501 0.04413652420043945 0.8832 0.9108 0.8968 0.8809
|
9 |
+
8 18:22:46 0 0.0100 0.03738312710290932 0.03726610541343689 0.9065 0.917 0.9117 0.8934
|
10 |
+
9 18:44:24 1 0.0100 0.03297667390843091 0.04557322338223457 0.8949 0.9224 0.9084 0.8937
|
11 |
+
10 19:06:06 0 0.0100 0.0303017038951756 0.03892701491713524 0.905 0.9216 0.9132 0.8958
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-10-26 15:28:10,168 ----------------------------------------------------------------------------------------------------
|
2 |
+
2022-10-26 15:28:10,173 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): XLMRobertaModel(
|
5 |
+
(embeddings): RobertaEmbeddings(
|
6 |
+
(word_embeddings): Embedding(250002, 768, padding_idx=1)
|
7 |
+
(position_embeddings): Embedding(514, 768, padding_idx=1)
|
8 |
+
(token_type_embeddings): Embedding(1, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): RobertaEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): RobertaLayer(
|
15 |
+
(attention): RobertaAttention(
|
16 |
+
(self): RobertaSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): RobertaSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): RobertaIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): RobertaOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): RobertaLayer(
|
39 |
+
(attention): RobertaAttention(
|
40 |
+
(self): RobertaSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): RobertaSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): RobertaIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): RobertaOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): RobertaLayer(
|
63 |
+
(attention): RobertaAttention(
|
64 |
+
(self): RobertaSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): RobertaSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): RobertaIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): RobertaOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): RobertaLayer(
|
87 |
+
(attention): RobertaAttention(
|
88 |
+
(self): RobertaSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): RobertaSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): RobertaIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): RobertaOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): RobertaLayer(
|
111 |
+
(attention): RobertaAttention(
|
112 |
+
(self): RobertaSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): RobertaSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): RobertaIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): RobertaOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): RobertaLayer(
|
135 |
+
(attention): RobertaAttention(
|
136 |
+
(self): RobertaSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): RobertaSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): RobertaIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): RobertaOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): RobertaLayer(
|
159 |
+
(attention): RobertaAttention(
|
160 |
+
(self): RobertaSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): RobertaSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): RobertaIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): RobertaOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): RobertaLayer(
|
183 |
+
(attention): RobertaAttention(
|
184 |
+
(self): RobertaSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): RobertaSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): RobertaIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): RobertaOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): RobertaLayer(
|
207 |
+
(attention): RobertaAttention(
|
208 |
+
(self): RobertaSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): RobertaSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): RobertaIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): RobertaOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): RobertaLayer(
|
231 |
+
(attention): RobertaAttention(
|
232 |
+
(self): RobertaSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): RobertaSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): RobertaIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): RobertaOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): RobertaLayer(
|
255 |
+
(attention): RobertaAttention(
|
256 |
+
(self): RobertaSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): RobertaSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): RobertaIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): RobertaOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): RobertaLayer(
|
279 |
+
(attention): RobertaAttention(
|
280 |
+
(self): RobertaSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): RobertaSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): RobertaIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): RobertaOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): RobertaPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(word_dropout): WordDropout(p=0.05)
|
311 |
+
(locked_dropout): LockedDropout(p=0.5)
|
312 |
+
(embedding2nn): Linear(in_features=768, out_features=768, bias=True)
|
313 |
+
(rnn): LSTM(768, 256, batch_first=True, bidirectional=True)
|
314 |
+
(linear): Linear(in_features=512, out_features=15, bias=True)
|
315 |
+
(loss_function): ViterbiLoss()
|
316 |
+
(crf): CRF()
|
317 |
+
)"
|
318 |
+
2022-10-26 15:28:10,176 ----------------------------------------------------------------------------------------------------
|
319 |
+
2022-10-26 15:28:10,180 Corpus: "Corpus: 8551 train + 1425 dev + 1425 test sentences"
|
320 |
+
2022-10-26 15:28:10,182 ----------------------------------------------------------------------------------------------------
|
321 |
+
2022-10-26 15:28:10,184 Parameters:
|
322 |
+
2022-10-26 15:28:10,186 - learning_rate: "0.010000"
|
323 |
+
2022-10-26 15:28:10,187 - mini_batch_size: "8"
|
324 |
+
2022-10-26 15:28:10,188 - patience: "3"
|
325 |
+
2022-10-26 15:28:10,189 - anneal_factor: "0.5"
|
326 |
+
2022-10-26 15:28:10,191 - max_epochs: "10"
|
327 |
+
2022-10-26 15:28:10,192 - shuffle: "True"
|
328 |
+
2022-10-26 15:28:10,193 - train_with_dev: "False"
|
329 |
+
2022-10-26 15:28:10,194 - batch_growth_annealing: "False"
|
330 |
+
2022-10-26 15:28:10,196 ----------------------------------------------------------------------------------------------------
|
331 |
+
2022-10-26 15:28:10,197 Model training base path: "/content/model/xlmr_ner"
|
332 |
+
2022-10-26 15:28:10,198 ----------------------------------------------------------------------------------------------------
|
333 |
+
2022-10-26 15:28:10,199 Device: cuda:0
|
334 |
+
2022-10-26 15:28:10,201 ----------------------------------------------------------------------------------------------------
|
335 |
+
2022-10-26 15:28:10,202 Embeddings storage mode: none
|
336 |
+
2022-10-26 15:28:10,203 ----------------------------------------------------------------------------------------------------
|
337 |
+
2022-10-26 15:30:29,962 epoch 1 - iter 106/1069 - loss 0.55101171 - samples/sec: 6.07 - lr: 0.010000
|
338 |
+
2022-10-26 15:32:28,714 epoch 1 - iter 212/1069 - loss 0.35636418 - samples/sec: 7.14 - lr: 0.010000
|
339 |
+
2022-10-26 15:34:23,625 epoch 1 - iter 318/1069 - loss 0.28047260 - samples/sec: 7.38 - lr: 0.010000
|
340 |
+
2022-10-26 15:36:24,015 epoch 1 - iter 424/1069 - loss 0.23890211 - samples/sec: 7.04 - lr: 0.010000
|
341 |
+
2022-10-26 15:38:21,987 epoch 1 - iter 530/1069 - loss 0.21322222 - samples/sec: 7.19 - lr: 0.010000
|
342 |
+
2022-10-26 15:40:22,521 epoch 1 - iter 636/1069 - loss 0.19431796 - samples/sec: 7.04 - lr: 0.010000
|
343 |
+
2022-10-26 15:42:18,754 epoch 1 - iter 742/1069 - loss 0.18084010 - samples/sec: 7.30 - lr: 0.010000
|
344 |
+
2022-10-26 15:44:18,344 epoch 1 - iter 848/1069 - loss 0.16975329 - samples/sec: 7.09 - lr: 0.010000
|
345 |
+
2022-10-26 15:46:14,738 epoch 1 - iter 954/1069 - loss 0.16158584 - samples/sec: 7.29 - lr: 0.010000
|
346 |
+
2022-10-26 15:48:14,067 epoch 1 - iter 1060/1069 - loss 0.15491697 - samples/sec: 7.11 - lr: 0.010000
|
347 |
+
2022-10-26 15:48:24,569 ----------------------------------------------------------------------------------------------------
|
348 |
+
2022-10-26 15:48:24,577 EPOCH 1 done: loss 0.1543 - lr 0.010000
|
349 |
+
2022-10-26 15:50:17,480 Evaluating as a multi-label problem: False
|
350 |
+
2022-10-26 15:50:17,512 DEV : loss 0.060714565217494965 - f1-score (micro avg) 0.7908
|
351 |
+
2022-10-26 15:50:17,553 BAD EPOCHS (no improvement): 0
|
352 |
+
2022-10-26 15:50:17,554 saving best model
|
353 |
+
2022-10-26 15:50:23,470 ----------------------------------------------------------------------------------------------------
|
354 |
+
2022-10-26 15:52:24,219 epoch 2 - iter 106/1069 - loss 0.08869057 - samples/sec: 7.02 - lr: 0.010000
|
355 |
+
2022-10-26 15:54:21,594 epoch 2 - iter 212/1069 - loss 0.08600343 - samples/sec: 7.23 - lr: 0.010000
|
356 |
+
2022-10-26 15:56:19,809 epoch 2 - iter 318/1069 - loss 0.08546665 - samples/sec: 7.17 - lr: 0.010000
|
357 |
+
2022-10-26 15:58:17,214 epoch 2 - iter 424/1069 - loss 0.08476718 - samples/sec: 7.22 - lr: 0.010000
|
358 |
+
2022-10-26 16:00:16,114 epoch 2 - iter 530/1069 - loss 0.08542624 - samples/sec: 7.13 - lr: 0.010000
|
359 |
+
2022-10-26 16:02:13,540 epoch 2 - iter 636/1069 - loss 0.08522910 - samples/sec: 7.22 - lr: 0.010000
|
360 |
+
2022-10-26 16:04:12,854 epoch 2 - iter 742/1069 - loss 0.08502467 - samples/sec: 7.11 - lr: 0.010000
|
361 |
+
2022-10-26 16:06:13,219 epoch 2 - iter 848/1069 - loss 0.08373459 - samples/sec: 7.05 - lr: 0.010000
|
362 |
+
2022-10-26 16:08:09,808 epoch 2 - iter 954/1069 - loss 0.08316639 - samples/sec: 7.27 - lr: 0.010000
|
363 |
+
2022-10-26 16:10:11,036 epoch 2 - iter 1060/1069 - loss 0.08215396 - samples/sec: 7.00 - lr: 0.010000
|
364 |
+
2022-10-26 16:10:21,246 ----------------------------------------------------------------------------------------------------
|
365 |
+
2022-10-26 16:10:21,249 EPOCH 2 done: loss 0.0821 - lr 0.010000
|
366 |
+
2022-10-26 16:12:13,875 Evaluating as a multi-label problem: False
|
367 |
+
2022-10-26 16:12:13,905 DEV : loss 0.05180404335260391 - f1-score (micro avg) 0.8408
|
368 |
+
2022-10-26 16:12:13,947 BAD EPOCHS (no improvement): 0
|
369 |
+
2022-10-26 16:12:13,948 saving best model
|
370 |
+
2022-10-26 16:12:19,344 ----------------------------------------------------------------------------------------------------
|
371 |
+
2022-10-26 16:14:19,879 epoch 3 - iter 106/1069 - loss 0.06627178 - samples/sec: 7.04 - lr: 0.010000
|
372 |
+
2022-10-26 16:16:18,272 epoch 3 - iter 212/1069 - loss 0.07094348 - samples/sec: 7.16 - lr: 0.010000
|
373 |
+
2022-10-26 16:18:18,453 epoch 3 - iter 318/1069 - loss 0.07194093 - samples/sec: 7.06 - lr: 0.010000
|
374 |
+
2022-10-26 16:20:15,802 epoch 3 - iter 424/1069 - loss 0.07242840 - samples/sec: 7.23 - lr: 0.010000
|
375 |
+
2022-10-26 16:22:12,248 epoch 3 - iter 530/1069 - loss 0.07171872 - samples/sec: 7.28 - lr: 0.010000
|
376 |
+
2022-10-26 16:24:12,231 epoch 3 - iter 636/1069 - loss 0.07162092 - samples/sec: 7.07 - lr: 0.010000
|
377 |
+
2022-10-26 16:26:10,382 epoch 3 - iter 742/1069 - loss 0.07130310 - samples/sec: 7.18 - lr: 0.010000
|
378 |
+
2022-10-26 16:28:08,953 epoch 3 - iter 848/1069 - loss 0.07050136 - samples/sec: 7.15 - lr: 0.010000
|
379 |
+
2022-10-26 16:30:09,728 epoch 3 - iter 954/1069 - loss 0.07070517 - samples/sec: 7.02 - lr: 0.010000
|
380 |
+
2022-10-26 16:32:08,721 epoch 3 - iter 1060/1069 - loss 0.07033198 - samples/sec: 7.13 - lr: 0.010000
|
381 |
+
2022-10-26 16:32:18,654 ----------------------------------------------------------------------------------------------------
|
382 |
+
2022-10-26 16:32:18,656 EPOCH 3 done: loss 0.0702 - lr 0.010000
|
383 |
+
2022-10-26 16:34:10,956 Evaluating as a multi-label problem: False
|
384 |
+
2022-10-26 16:34:10,986 DEV : loss 0.04575943946838379 - f1-score (micro avg) 0.8693
|
385 |
+
2022-10-26 16:34:11,026 BAD EPOCHS (no improvement): 0
|
386 |
+
2022-10-26 16:34:11,029 saving best model
|
387 |
+
2022-10-26 16:34:16,564 ----------------------------------------------------------------------------------------------------
|
388 |
+
2022-10-26 16:36:12,350 epoch 4 - iter 106/1069 - loss 0.06432601 - samples/sec: 7.32 - lr: 0.010000
|
389 |
+
2022-10-26 16:38:08,474 epoch 4 - iter 212/1069 - loss 0.06376094 - samples/sec: 7.30 - lr: 0.010000
|
390 |
+
2022-10-26 16:40:03,219 epoch 4 - iter 318/1069 - loss 0.06273795 - samples/sec: 7.39 - lr: 0.010000
|
391 |
+
2022-10-26 16:41:59,110 epoch 4 - iter 424/1069 - loss 0.06153989 - samples/sec: 7.32 - lr: 0.010000
|
392 |
+
2022-10-26 16:43:57,347 epoch 4 - iter 530/1069 - loss 0.06137878 - samples/sec: 7.17 - lr: 0.010000
|
393 |
+
2022-10-26 16:45:55,146 epoch 4 - iter 636/1069 - loss 0.06072772 - samples/sec: 7.20 - lr: 0.010000
|
394 |
+
2022-10-26 16:47:53,049 epoch 4 - iter 742/1069 - loss 0.06031769 - samples/sec: 7.19 - lr: 0.010000
|
395 |
+
2022-10-26 16:49:50,705 epoch 4 - iter 848/1069 - loss 0.06084099 - samples/sec: 7.21 - lr: 0.010000
|
396 |
+
2022-10-26 16:51:49,833 epoch 4 - iter 954/1069 - loss 0.06096388 - samples/sec: 7.12 - lr: 0.010000
|
397 |
+
2022-10-26 16:53:45,640 epoch 4 - iter 1060/1069 - loss 0.06061743 - samples/sec: 7.32 - lr: 0.010000
|
398 |
+
2022-10-26 16:53:54,974 ----------------------------------------------------------------------------------------------------
|
399 |
+
2022-10-26 16:53:54,976 EPOCH 4 done: loss 0.0606 - lr 0.010000
|
400 |
+
2022-10-26 16:55:45,518 Evaluating as a multi-label problem: False
|
401 |
+
2022-10-26 16:55:45,548 DEV : loss 0.04747875779867172 - f1-score (micro avg) 0.8627
|
402 |
+
2022-10-26 16:55:45,589 BAD EPOCHS (no improvement): 1
|
403 |
+
2022-10-26 16:55:45,590 ----------------------------------------------------------------------------------------------------
|
404 |
+
2022-10-26 16:57:41,259 epoch 5 - iter 106/1069 - loss 0.05285565 - samples/sec: 7.33 - lr: 0.010000
|
405 |
+
2022-10-26 16:59:40,296 epoch 5 - iter 212/1069 - loss 0.05049977 - samples/sec: 7.12 - lr: 0.010000
|
406 |
+
2022-10-26 17:01:35,184 epoch 5 - iter 318/1069 - loss 0.05297933 - samples/sec: 7.38 - lr: 0.010000
|
407 |
+
2022-10-26 17:03:34,028 epoch 5 - iter 424/1069 - loss 0.05293744 - samples/sec: 7.14 - lr: 0.010000
|
408 |
+
2022-10-26 17:05:29,295 epoch 5 - iter 530/1069 - loss 0.05359386 - samples/sec: 7.36 - lr: 0.010000
|
409 |
+
2022-10-26 17:07:25,593 epoch 5 - iter 636/1069 - loss 0.05307424 - samples/sec: 7.29 - lr: 0.010000
|
410 |
+
2022-10-26 17:09:22,893 epoch 5 - iter 742/1069 - loss 0.05323355 - samples/sec: 7.23 - lr: 0.010000
|
411 |
+
2022-10-26 17:11:22,602 epoch 5 - iter 848/1069 - loss 0.05272547 - samples/sec: 7.08 - lr: 0.010000
|
412 |
+
2022-10-26 17:13:22,960 epoch 5 - iter 954/1069 - loss 0.05280553 - samples/sec: 7.05 - lr: 0.010000
|
413 |
+
2022-10-26 17:15:20,527 epoch 5 - iter 1060/1069 - loss 0.05265360 - samples/sec: 7.21 - lr: 0.010000
|
414 |
+
2022-10-26 17:15:29,931 ----------------------------------------------------------------------------------------------------
|
415 |
+
2022-10-26 17:15:29,932 EPOCH 5 done: loss 0.0526 - lr 0.010000
|
416 |
+
2022-10-26 17:17:21,728 Evaluating as a multi-label problem: False
|
417 |
+
2022-10-26 17:17:21,760 DEV : loss 0.03879784420132637 - f1-score (micro avg) 0.8864
|
418 |
+
2022-10-26 17:17:21,803 BAD EPOCHS (no improvement): 0
|
419 |
+
2022-10-26 17:17:21,804 saving best model
|
420 |
+
2022-10-26 17:17:27,330 ----------------------------------------------------------------------------------------------------
|
421 |
+
2022-10-26 17:19:26,401 epoch 6 - iter 106/1069 - loss 0.04801558 - samples/sec: 7.12 - lr: 0.010000
|
422 |
+
2022-10-26 17:21:22,988 epoch 6 - iter 212/1069 - loss 0.05008290 - samples/sec: 7.27 - lr: 0.010000
|
423 |
+
2022-10-26 17:23:16,794 epoch 6 - iter 318/1069 - loss 0.04925649 - samples/sec: 7.45 - lr: 0.010000
|
424 |
+
2022-10-26 17:25:15,532 epoch 6 - iter 424/1069 - loss 0.04786643 - samples/sec: 7.14 - lr: 0.010000
|
425 |
+
2022-10-26 17:27:13,913 epoch 6 - iter 530/1069 - loss 0.04879792 - samples/sec: 7.16 - lr: 0.010000
|
426 |
+
2022-10-26 17:29:10,114 epoch 6 - iter 636/1069 - loss 0.04800786 - samples/sec: 7.30 - lr: 0.010000
|
427 |
+
2022-10-26 17:31:07,810 epoch 6 - iter 742/1069 - loss 0.04755361 - samples/sec: 7.21 - lr: 0.010000
|
428 |
+
2022-10-26 17:33:04,496 epoch 6 - iter 848/1069 - loss 0.04782375 - samples/sec: 7.27 - lr: 0.010000
|
429 |
+
2022-10-26 17:35:05,834 epoch 6 - iter 954/1069 - loss 0.04776160 - samples/sec: 6.99 - lr: 0.010000
|
430 |
+
2022-10-26 17:37:03,878 epoch 6 - iter 1060/1069 - loss 0.04743945 - samples/sec: 7.18 - lr: 0.010000
|
431 |
+
2022-10-26 17:37:14,466 ----------------------------------------------------------------------------------------------------
|
432 |
+
2022-10-26 17:37:14,468 EPOCH 6 done: loss 0.0475 - lr 0.010000
|
433 |
+
2022-10-26 17:39:07,562 Evaluating as a multi-label problem: False
|
434 |
+
2022-10-26 17:39:07,592 DEV : loss 0.03874654322862625 - f1-score (micro avg) 0.8908
|
435 |
+
2022-10-26 17:39:07,633 BAD EPOCHS (no improvement): 0
|
436 |
+
2022-10-26 17:39:07,635 saving best model
|
437 |
+
2022-10-26 17:39:13,242 ----------------------------------------------------------------------------------------------------
|
438 |
+
2022-10-26 17:41:11,924 epoch 7 - iter 106/1069 - loss 0.04334369 - samples/sec: 7.15 - lr: 0.010000
|
439 |
+
2022-10-26 17:43:11,382 epoch 7 - iter 212/1069 - loss 0.04192565 - samples/sec: 7.10 - lr: 0.010000
|
440 |
+
2022-10-26 17:45:08,087 epoch 7 - iter 318/1069 - loss 0.04115627 - samples/sec: 7.27 - lr: 0.010000
|
441 |
+
2022-10-26 17:47:06,615 epoch 7 - iter 424/1069 - loss 0.04114928 - samples/sec: 7.16 - lr: 0.010000
|
442 |
+
2022-10-26 17:49:03,863 epoch 7 - iter 530/1069 - loss 0.04105023 - samples/sec: 7.23 - lr: 0.010000
|
443 |
+
2022-10-26 17:51:02,216 epoch 7 - iter 636/1069 - loss 0.04125208 - samples/sec: 7.17 - lr: 0.010000
|
444 |
+
2022-10-26 17:53:04,293 epoch 7 - iter 742/1069 - loss 0.04151765 - samples/sec: 6.95 - lr: 0.010000
|
445 |
+
2022-10-26 17:55:01,446 epoch 7 - iter 848/1069 - loss 0.04170200 - samples/sec: 7.24 - lr: 0.010000
|
446 |
+
2022-10-26 17:56:59,848 epoch 7 - iter 954/1069 - loss 0.04180177 - samples/sec: 7.16 - lr: 0.010000
|
447 |
+
2022-10-26 17:58:56,175 epoch 7 - iter 1060/1069 - loss 0.04203413 - samples/sec: 7.29 - lr: 0.010000
|
448 |
+
2022-10-26 17:59:05,814 ----------------------------------------------------------------------------------------------------
|
449 |
+
2022-10-26 17:59:05,816 EPOCH 7 done: loss 0.0420 - lr 0.010000
|
450 |
+
2022-10-26 18:00:59,457 Evaluating as a multi-label problem: False
|
451 |
+
2022-10-26 18:00:59,486 DEV : loss 0.04413652420043945 - f1-score (micro avg) 0.8968
|
452 |
+
2022-10-26 18:00:59,527 BAD EPOCHS (no improvement): 0
|
453 |
+
2022-10-26 18:00:59,529 saving best model
|
454 |
+
2022-10-26 18:01:05,372 ----------------------------------------------------------------------------------------------------
|
455 |
+
2022-10-26 18:03:03,422 epoch 8 - iter 106/1069 - loss 0.03592615 - samples/sec: 7.18 - lr: 0.010000
|
456 |
+
2022-10-26 18:05:00,466 epoch 8 - iter 212/1069 - loss 0.03676863 - samples/sec: 7.25 - lr: 0.010000
|
457 |
+
2022-10-26 18:06:58,178 epoch 8 - iter 318/1069 - loss 0.03702258 - samples/sec: 7.20 - lr: 0.010000
|
458 |
+
2022-10-26 18:08:55,170 epoch 8 - iter 424/1069 - loss 0.03704658 - samples/sec: 7.25 - lr: 0.010000
|
459 |
+
2022-10-26 18:10:52,222 epoch 8 - iter 530/1069 - loss 0.03711348 - samples/sec: 7.25 - lr: 0.010000
|
460 |
+
2022-10-26 18:12:51,244 epoch 8 - iter 636/1069 - loss 0.03715815 - samples/sec: 7.13 - lr: 0.010000
|
461 |
+
2022-10-26 18:14:50,229 epoch 8 - iter 742/1069 - loss 0.03708747 - samples/sec: 7.13 - lr: 0.010000
|
462 |
+
2022-10-26 18:16:47,946 epoch 8 - iter 848/1069 - loss 0.03734575 - samples/sec: 7.20 - lr: 0.010000
|
463 |
+
2022-10-26 18:18:45,873 epoch 8 - iter 954/1069 - loss 0.03736843 - samples/sec: 7.19 - lr: 0.010000
|
464 |
+
2022-10-26 18:20:43,504 epoch 8 - iter 1060/1069 - loss 0.03737578 - samples/sec: 7.21 - lr: 0.010000
|
465 |
+
2022-10-26 18:20:53,262 ----------------------------------------------------------------------------------------------------
|
466 |
+
2022-10-26 18:20:53,265 EPOCH 8 done: loss 0.0374 - lr 0.010000
|
467 |
+
2022-10-26 18:22:46,256 Evaluating as a multi-label problem: False
|
468 |
+
2022-10-26 18:22:46,293 DEV : loss 0.03726610541343689 - f1-score (micro avg) 0.9117
|
469 |
+
2022-10-26 18:22:46,336 BAD EPOCHS (no improvement): 0
|
470 |
+
2022-10-26 18:22:46,337 saving best model
|
471 |
+
2022-10-26 18:22:51,847 ----------------------------------------------------------------------------------------------------
|
472 |
+
2022-10-26 18:24:50,402 epoch 9 - iter 106/1069 - loss 0.03606101 - samples/sec: 7.15 - lr: 0.010000
|
473 |
+
2022-10-26 18:26:47,577 epoch 9 - iter 212/1069 - loss 0.03466163 - samples/sec: 7.24 - lr: 0.010000
|
474 |
+
2022-10-26 18:28:47,029 epoch 9 - iter 318/1069 - loss 0.03420843 - samples/sec: 7.10 - lr: 0.010000
|
475 |
+
2022-10-26 18:30:43,235 epoch 9 - iter 424/1069 - loss 0.03406325 - samples/sec: 7.30 - lr: 0.010000
|
476 |
+
2022-10-26 18:32:41,132 epoch 9 - iter 530/1069 - loss 0.03393077 - samples/sec: 7.19 - lr: 0.010000
|
477 |
+
2022-10-26 18:34:35,953 epoch 9 - iter 636/1069 - loss 0.03438052 - samples/sec: 7.39 - lr: 0.010000
|
478 |
+
2022-10-26 18:36:33,872 epoch 9 - iter 742/1069 - loss 0.03435922 - samples/sec: 7.19 - lr: 0.010000
|
479 |
+
2022-10-26 18:38:30,457 epoch 9 - iter 848/1069 - loss 0.03351594 - samples/sec: 7.27 - lr: 0.010000
|
480 |
+
2022-10-26 18:40:26,775 epoch 9 - iter 954/1069 - loss 0.03363514 - samples/sec: 7.29 - lr: 0.010000
|
481 |
+
2022-10-26 18:42:26,040 epoch 9 - iter 1060/1069 - loss 0.03301736 - samples/sec: 7.11 - lr: 0.010000
|
482 |
+
2022-10-26 18:42:34,477 ----------------------------------------------------------------------------------------------------
|
483 |
+
2022-10-26 18:42:34,480 EPOCH 9 done: loss 0.0330 - lr 0.010000
|
484 |
+
2022-10-26 18:44:24,572 Evaluating as a multi-label problem: False
|
485 |
+
2022-10-26 18:44:24,602 DEV : loss 0.04557322338223457 - f1-score (micro avg) 0.9084
|
486 |
+
2022-10-26 18:44:24,644 BAD EPOCHS (no improvement): 1
|
487 |
+
2022-10-26 18:44:24,646 ----------------------------------------------------------------------------------------------------
|
488 |
+
2022-10-26 18:46:21,774 epoch 10 - iter 106/1069 - loss 0.02992093 - samples/sec: 7.24 - lr: 0.010000
|
489 |
+
2022-10-26 18:48:20,730 epoch 10 - iter 212/1069 - loss 0.02886380 - samples/sec: 7.13 - lr: 0.010000
|
490 |
+
2022-10-26 18:50:20,679 epoch 10 - iter 318/1069 - loss 0.03109654 - samples/sec: 7.07 - lr: 0.010000
|
491 |
+
2022-10-26 18:52:14,564 epoch 10 - iter 424/1069 - loss 0.03091892 - samples/sec: 7.45 - lr: 0.010000
|
492 |
+
2022-10-26 18:54:14,888 epoch 10 - iter 530/1069 - loss 0.02977117 - samples/sec: 7.05 - lr: 0.010000
|
493 |
+
2022-10-26 18:56:13,992 epoch 10 - iter 636/1069 - loss 0.02969566 - samples/sec: 7.12 - lr: 0.010000
|
494 |
+
2022-10-26 18:58:12,618 epoch 10 - iter 742/1069 - loss 0.02979601 - samples/sec: 7.15 - lr: 0.010000
|
495 |
+
2022-10-26 19:00:10,398 epoch 10 - iter 848/1069 - loss 0.03040781 - samples/sec: 7.20 - lr: 0.010000
|
496 |
+
2022-10-26 19:02:06,063 epoch 10 - iter 954/1069 - loss 0.03029135 - samples/sec: 7.33 - lr: 0.010000
|
497 |
+
2022-10-26 19:04:05,626 epoch 10 - iter 1060/1069 - loss 0.03035206 - samples/sec: 7.09 - lr: 0.010000
|
498 |
+
2022-10-26 19:04:15,538 ----------------------------------------------------------------------------------------------------
|
499 |
+
2022-10-26 19:04:15,540 EPOCH 10 done: loss 0.0303 - lr 0.010000
|
500 |
+
2022-10-26 19:06:06,586 Evaluating as a multi-label problem: False
|
501 |
+
2022-10-26 19:06:06,621 DEV : loss 0.03892701491713524 - f1-score (micro avg) 0.9132
|
502 |
+
2022-10-26 19:06:06,663 BAD EPOCHS (no improvement): 0
|
503 |
+
2022-10-26 19:06:06,665 saving best model
|
504 |
+
2022-10-26 19:06:17,597 ----------------------------------------------------------------------------------------------------
|
505 |
+
2022-10-26 19:06:17,723 loading file /content/model/xlmr_ner/best-model.pt
|
506 |
+
2022-10-26 19:06:24,597 SequenceTagger predicts: Dictionary with 15 tags: O, S-PER, B-PER, E-PER, I-PER, S-MISC, B-MISC, E-MISC, I-MISC, S-LOC, B-LOC, E-LOC, I-LOC, <START>, <STOP>
|
507 |
+
2022-10-26 19:08:17,003 Evaluating as a multi-label problem: False
|
508 |
+
2022-10-26 19:08:17,040 0.9053 0.9316 0.9182 0.8955
|
509 |
+
2022-10-26 19:08:17,041
|
510 |
+
Results:
|
511 |
+
- F-score (micro) 0.9182
|
512 |
+
- F-score (macro) 0.8875
|
513 |
+
- Accuracy 0.8955
|
514 |
+
|
515 |
+
By class:
|
516 |
+
precision recall f1-score support
|
517 |
+
|
518 |
+
PER 0.9339 0.9633 0.9484 2127
|
519 |
+
MISC 0.8469 0.9250 0.8842 933
|
520 |
+
LOC 0.8955 0.7732 0.8299 388
|
521 |
+
|
522 |
+
micro avg 0.9053 0.9316 0.9182 3448
|
523 |
+
macro avg 0.8921 0.8872 0.8875 3448
|
524 |
+
weighted avg 0.9060 0.9316 0.9177 3448
|
525 |
+
|
526 |
+
2022-10-26 19:08:17,045 ----------------------------------------------------------------------------------------------------
|
weights.txt
ADDED
File without changes
|