--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: openai-whisper-tiny-es_ecu911DM results: [] --- # openai-whisper-tiny-es_ecu911DM This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4002 - Wer: 69.9849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 6 - total_eval_batch_size: 3 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.0034 | 7.9365 | 500 | 1.0793 | 110.2195 | | 0.4592 | 15.8730 | 1000 | 0.6520 | 84.7275 | | 0.2524 | 23.8095 | 1500 | 0.4613 | 71.3096 | | 0.1489 | 31.7460 | 2000 | 0.4002 | 69.9849 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1