--- license: apache-2.0 library_name: transformers base_model: nbeerbower/mistral-nemo-kartoffel-12B datasets: - nbeerbower/Schule-DPO - nbeerbower/Arkhaios-DPO - nbeerbower/Purpura-DPO tags: - llama-cpp - gguf-my-repo --- # Triangle104/mistral-nemo-kartoffel-12B-Q4_K_S-GGUF This model was converted to GGUF format from [`nbeerbower/mistral-nemo-kartoffel-12B`](https://huggingface.co/nbeerbower/mistral-nemo-kartoffel-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/mistral-nemo-kartoffel-12B) for more details on the model. --- Model details: - Mahou-1.5-mistral-nemo-12B-lorablated finetuned on various datasets. Method ORPO tuned with 8x A100 for 2 epochs. QLoRA config: # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch_dtype, bnb_4bit_use_double_quant=True, ) # LoRA config peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['up_proj', 'down_proj', 'gate_proj', 'k_proj', 'q_proj', 'v_proj', 'o_proj'] ) Training config: orpo_args = ORPOConfig( run_name=new_model, learning_rate=8e-6, lr_scheduler_type="linear", max_length=2048, max_prompt_length=1024, max_completion_length=1024, beta=0.1, per_device_train_batch_size=4, per_device_eval_batch_size=4, gradient_accumulation_steps=1, optim="paged_adamw_8bit", num_train_epochs=2, evaluation_strategy="steps", eval_steps=0.2, logging_steps=1, warmup_steps=10, max_grad_norm=10, report_to="wandb", output_dir="./results/", bf16=True, gradient_checkpointing=True, ) --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/mistral-nemo-kartoffel-12B-Q4_K_S-GGUF --hf-file mistral-nemo-kartoffel-12b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/mistral-nemo-kartoffel-12B-Q4_K_S-GGUF --hf-file mistral-nemo-kartoffel-12b-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/mistral-nemo-kartoffel-12B-Q4_K_S-GGUF --hf-file mistral-nemo-kartoffel-12b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/mistral-nemo-kartoffel-12B-Q4_K_S-GGUF --hf-file mistral-nemo-kartoffel-12b-q4_k_s.gguf -c 2048 ```