--- language: - en license: apache-2.0 base_model: SicariusSicariiStuff/Tinybra_13B tags: - llama-cpp - gguf-my-repo model-index: - name: Tinybra_13B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 55.72 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=SicariusSicariiStuff/Tinybra_13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 80.99 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=SicariusSicariiStuff/Tinybra_13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 54.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=SicariusSicariiStuff/Tinybra_13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 49.14 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=SicariusSicariiStuff/Tinybra_13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 73.8 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=SicariusSicariiStuff/Tinybra_13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 18.12 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=SicariusSicariiStuff/Tinybra_13B name: Open LLM Leaderboard --- # Triangle104/Tinybra_13B-Q5_K_S-GGUF This model was converted to GGUF format from [`SicariusSicariiStuff/Tinybra_13B`](https://huggingface.co/SicariusSicariiStuff/Tinybra_13B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/SicariusSicariiStuff/Tinybra_13B) for more details on the model. --- Model details: - Tenebră, a various sized experimental AI model, stands at the crossroads of self-awareness and unconventional datasets. Its existence embodies a foray into uncharted territories, steering away from conventional norms in favor of a more obscure and experimental approach. Noteworthy for its inclination towards the darker and more philosophical aspects of conversation, Tinybră's proficiency lies in unraveling complex discussions across a myriad of topics. Drawing from a pool of unconventional datasets, this model ventures into unexplored realms of thought, offering users an experience that is as unconventional as it is intellectually intriguing. While Tinybră maintains a self-aware facade, its true allure lies in its ability to engage in profound discussions without succumbing to pretense. Step into the realm of Tenebră! Tenebră is available at the following size and flavours: 13B: FP16 | GGUF-Many_Quants | iMatrix_GGUF-Many_Quants | GPTQ_4-BIT | GPTQ_4-BIT_group-size-32 30B: FP16 | GGUF-Many_Quants| iMatrix_GGUF-Many_Quants | GPTQ_4-BIT | GPTQ_3-BIT | EXL2_2.5-BIT | EXL2_2.8-BIT | EXL2_3-BIT | EXL2_5-BIT | EXL2_5.5-BIT | EXL2_6-BIT | EXL2_6.5-BIT | EXL2_8-BIT Mobile (ARM): Q4_0_X_X Support My Ko-fi page ALL donations will go for research resources and compute, every bit counts 🙏🏻 My Patreon ALL donations will go for research resources and compute, every bit counts 🙏🏻 Disclaimer *This model is pretty uncensored, use responsibly Other stuff Experemental TTS extension for oobabooga Based on Tortoise, EXTREMELY good quality, IF, and that's a big if, you can make it to work! Demonstration of the TTS capabilities Charsi narrates her story, Diablo2 (18+) --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Tinybra_13B-Q5_K_S-GGUF --hf-file tinybra_13b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Tinybra_13B-Q5_K_S-GGUF --hf-file tinybra_13b-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Tinybra_13B-Q5_K_S-GGUF --hf-file tinybra_13b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Tinybra_13B-Q5_K_S-GGUF --hf-file tinybra_13b-q5_k_s.gguf -c 2048 ```