Triangle104 commited on
Commit
4fd89c8
·
verified ·
1 Parent(s): dc2396f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -0
README.md CHANGED
@@ -22,6 +22,117 @@ tags:
22
  This model was converted to GGUF format from [`mistralai/Mistral-Nemo-Base-2407`](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
23
  Refer to the [original model card](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) for more details on the model.
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ## Use with llama.cpp
26
  Install llama.cpp through brew (works on Mac and Linux)
27
 
 
22
  This model was converted to GGUF format from [`mistralai/Mistral-Nemo-Base-2407`](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
23
  Refer to the [original model card](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) for more details on the model.
24
 
25
+ ---
26
+ Model details:
27
+ -
28
+ The Mistral-Nemo-Base-2407 Large Language Model (LLM) is a pretrained generative text model of 12B parameters trained jointly by Mistral AI and NVIDIA, it significantly outperforms existing models smaller or similar in size.
29
+
30
+ For more details about this model please refer to our release blog post.
31
+
32
+ Key features
33
+ -
34
+ Released under the Apache 2 License
35
+ Pre-trained and instructed versions
36
+ Trained with a 128k context window
37
+ Trained on a large proportion of multilingual and code data
38
+ Drop-in replacement of Mistral 7B
39
+
40
+ Model Architecture
41
+ -
42
+ Mistral Nemo is a transformer model, with the following architecture choices:
43
+
44
+ Layers: 40
45
+ Dim: 5,120
46
+ Head dim: 128
47
+ Hidden dim: 14,436
48
+ Activation Function: SwiGLU
49
+ Number of heads: 32
50
+ Number of kv-heads: 8 (GQA)
51
+ Vocabulary size: 2**17 ~= 128k
52
+ Rotary embeddings (theta = 1M)
53
+
54
+ Metrics
55
+ Main Benchmarks
56
+ Benchmark Score
57
+ HellaSwag (0-shot) 83.5%
58
+ Winogrande (0-shot) 76.8%
59
+ OpenBookQA (0-shot) 60.6%
60
+ CommonSenseQA (0-shot) 70.4%
61
+ TruthfulQA (0-shot) 50.3%
62
+ MMLU (5-shot) 68.0%
63
+ TriviaQA (5-shot) 73.8%
64
+ NaturalQuestions (5-shot) 31.2%
65
+ Multilingual Benchmarks (MMLU)
66
+ Language Score
67
+ French 62.3%
68
+ German 62.7%
69
+ Spanish 64.6%
70
+ Italian 61.3%
71
+ Portuguese 63.3%
72
+ Russian 59.2%
73
+ Chinese 59.0%
74
+ Japanese 59.0%
75
+ Usage
76
+
77
+ The model can be used with three different frameworks
78
+
79
+ mistral_inference: See here
80
+ transformers: See here
81
+ NeMo: See nvidia/Mistral-NeMo-12B-Base
82
+
83
+ Mistral Inference
84
+ -
85
+ Install
86
+ -
87
+ It is recommended to use mistralai/Mistral-Nemo-Base-2407 with mistral-inference. For HF transformers code snippets, please keep scrolling.
88
+
89
+ pip install mistral_inference
90
+
91
+ Download
92
+ -
93
+ from huggingface_hub import snapshot_download
94
+ from pathlib import Path
95
+
96
+ mistral_models_path = Path.home().joinpath('mistral_models', 'Nemo-v0.1')
97
+ mistral_models_path.mkdir(parents=True, exist_ok=True)
98
+
99
+ snapshot_download(repo_id="mistralai/Mistral-Nemo-Base-2407", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
100
+
101
+ Demo
102
+ -
103
+ After installing mistral_inference, a mistral-demo CLI command should be available in your environment.
104
+
105
+ mistral-demo $HOME/mistral_models/Nemo-v0.1
106
+
107
+ Transformers
108
+ -
109
+ NOTE: Until a new release has been made, you need to install transformers from source:
110
+
111
+ pip install git+https://github.com/huggingface/transformers.git
112
+
113
+ If you want to use Hugging Face transformers to generate text, you can do something like this.
114
+
115
+ from transformers import AutoModelForCausalLM, AutoTokenizer
116
+
117
+ model_id = "mistralai/Mistral-Nemo-Base-2407"
118
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
119
+
120
+ model = AutoModelForCausalLM.from_pretrained(model_id)
121
+ inputs = tokenizer("Hello my name is", return_tensors="pt")
122
+
123
+ outputs = model.generate(**inputs, max_new_tokens=20)
124
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
125
+
126
+ Unlike previous Mistral models, Mistral Nemo requires smaller temperatures. We recommend to use a temperature of 0.3.
127
+
128
+ Note
129
+ -
130
+ Mistral-Nemo-Base-2407 is a pretrained base model and therefore does not have any moderation mechanisms.
131
+ The Mistral AI Team
132
+
133
+ Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall
134
+
135
+ ---
136
  ## Use with llama.cpp
137
  Install llama.cpp through brew (works on Mac and Linux)
138