File size: 6,501 Bytes
861bfcf 6dd1cd1 d55bd93 6dd1cd1 d55bd93 6dd1cd1 d55bd93 6dd1cd1 d55bd93 6dd1cd1 d55bd93 6dd1cd1 d55bd93 6dd1cd1 d55bd93 6dd1cd1 d55bd93 6dd1cd1 d55bd93 6dd1cd1 d55bd93 6dd1cd1 d55bd93 6dd1cd1 d55bd93 6dd1cd1 861bfcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
---
license: llama3.1
language:
- en
pipeline_tag: text-generation
datasets:
- allenai/RLVR-GSM-MATH-IF-Mixed-Constraints
base_model: allenai/Llama-3.1-Tulu-3-8B
library_name: transformers
tags:
- llama-cpp
- gguf-my-repo
---
# Triangle104/Llama-3.1-Tulu-3-8B-Q6_K-GGUF
This model was converted to GGUF format from [`allenai/Llama-3.1-Tulu-3-8B`](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) for more details on the model.
---
Model details:
-
Tülu3 is a leading instruction following model family, offering fully
open-source data, code, and recipes designed to serve as a
comprehensive guide for modern post-training techniques.
Tülu3 is designed for state-of-the-art performance on a diversity of
tasks in addition to chat, such as MATH, GSM8K, and IFEval.
Model description
Model type: A model trained on a mix of publicly available, synthetic and human-created datasets.
Language(s) (NLP): Primarily English
License: Llama 3.1 Community License Agreement
Finetuned from model: allenai/Llama-3.1-Tulu-3-8B-DPO
Model Sources
Training Repository: https://github.com/allenai/open-instruct
Eval Repository: https://github.com/allenai/olmes
Paper: https://arxiv.org/abs/2411.15124
Demo: https://playground.allenai.org/
Using the model
Loading with HuggingFace
To load the model with HuggingFace, use the following snippet:
from transformers import AutoModelForCausalLM
tulu_model = AutoModelForCausalLM.from_pretrained("allenai/Llama-3.1-Tulu-3-8B")
VLLM
As a Llama base model, the model can be easily served with:
vllm serve allenai/Llama-3.1-Tulu-3-8B
Note that given the long chat template of Llama, you may want to use --max_model_len=8192.
Chat template
The chat template for our models is formatted as:
<|user|>\nHow are you doing?\n<|assistant|>\nI'm just a
computer program, so I don't have feelings, but I'm functioning as
expected. How can I assist you today?<|endoftext|>
Or with new lines expanded:
<|user|>
How are you doing?
<|assistant|>
I'm just a computer program, so I don't have feelings, but I'm
functioning as expected. How can I assist you today?<|endoftext|>
It is embedded within the tokenizer as well, for tokenizer.apply_chat_template.
System prompt
In Ai2 demos, we use this system prompt by default:
You are Tulu 3, a helpful and harmless AI Assistant built by the Allen Institute for AI.
The model has not been trained with a specific system prompt in mind.
Bias, Risks, and Limitations
The Tülu3 models have limited safety training, but are not deployed
automatically with in-the-loop filtering of responses like ChatGPT, so
the model can produce problematic outputs (especially when prompted to
do so).
It is also unknown what the size and composition of the corpus was used
to train the base Llama 3.1 models, however it is likely to have
included a mix of Web data and technical sources like books and code.
See the Falcon 180B model card for an example of this.
Hyperparamters
PPO settings for RLVR:
Learning Rate: 3 × 10⁻⁷
Discount Factor (gamma): 1.0
General Advantage Estimation (lambda): 0.95
Mini-batches (N_mb): 1
PPO Update Iterations (K): 4
PPO's Clipping Coefficient (epsilon): 0.2
Value Function Coefficient (c1): 0.1
Gradient Norm Threshold: 1.0
Learning Rate Schedule: Linear
Generation Temperature: 1.0
Batch Size (effective): 512
Max Token Length: 2,048
Max Prompt Token Length: 2,048
Penalty Reward Value for Responses without an EOS Token: -10.0
Response Length: 1,024 (but 2,048 for MATH)
Total Episodes: 100,000
KL penalty coefficient (beta): [0.1, 0.05, 0.03, 0.01]
Warm up ratio (omega): 0.0
License and use
All Llama 3.1 Tülu3 models are released under Meta's Llama 3.1 Community License Agreement.
Llama 3.1 is licensed under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc.
Tülu3 is intended for research and educational use.
For more information, please see our Responsible Use Guidelines.
The models have been fine-tuned using a dataset mix with outputs
generated from third party models and are subject to additional terms:
Gemma Terms of Use and Qwen License Agreement (models were improved using Qwen 2.5).
Citation
If Tülu3 or any of the related materials were helpful to your work, please cite:
@article{lambert2024tulu3,
title = {Tülu 3: Pushing Frontiers in Open Language Model Post-Training},
author = {
Nathan Lambert and
Jacob Morrison and
Valentina Pyatkin and
Shengyi Huang and
Hamish Ivison and
Faeze Brahman and
Lester James V. Miranda and
Alisa Liu and
Nouha Dziri and
Shane Lyu and
Yuling Gu and
Saumya Malik and
Victoria Graf and
Jena D. Hwang and
Jiangjiang Yang and
Ronan Le Bras and
Oyvind Tafjord and
Chris Wilhelm and
Luca Soldaini and
Noah A. Smith and
Yizhong Wang and
Pradeep Dasigi and
Hannaneh Hajishirzi
},
year = {2024},
email = {[email protected]}
}
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Llama-3.1-Tulu-3-8B-Q6_K-GGUF --hf-file llama-3.1-tulu-3-8b-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Llama-3.1-Tulu-3-8B-Q6_K-GGUF --hf-file llama-3.1-tulu-3-8b-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Llama-3.1-Tulu-3-8B-Q6_K-GGUF --hf-file llama-3.1-tulu-3-8b-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Llama-3.1-Tulu-3-8B-Q6_K-GGUF --hf-file llama-3.1-tulu-3-8b-q6_k.gguf -c 2048
```
|