--- license: apache-2.0 library_name: transformers tags: - general-purpose - roleplay - storywriting - merge - finetune - llama-cpp - gguf-my-repo base_model: elinas/Chronos-Gold-12B-1.0 model-index: - name: Chronos-Gold-12B-1.0 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 31.66 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=elinas/Chronos-Gold-12B-1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 35.91 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=elinas/Chronos-Gold-12B-1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 4.38 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=elinas/Chronos-Gold-12B-1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 9.06 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=elinas/Chronos-Gold-12B-1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 19.42 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=elinas/Chronos-Gold-12B-1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 27.98 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=elinas/Chronos-Gold-12B-1.0 name: Open LLM Leaderboard --- # Triangle104/Chronos-Gold-12B-1.0-Q4_K_S-GGUF This model was converted to GGUF format from [`elinas/Chronos-Gold-12B-1.0`](https://huggingface.co/elinas/Chronos-Gold-12B-1.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/elinas/Chronos-Gold-12B-1.0) for more details on the model. --- Model detaILs: - Chronos Gold 12B 1.0 is a very unique model that applies to domain areas such as general chatbot functionatliy, roleplay, and storywriting. The model has been observed to write up to 2250 tokens in a single sequence. The model was trained at a sequence length of 16384 (16k) and will still retain the apparent 128k context length from Mistral-Nemo, though it deteriorates over time like regular Nemo does based on the RULER Test As a result, is recommended to keep your sequence length max at 16384, or you will experience performance degredation. The base model is mistralai/Mistral-Nemo-Base-2407 which was heavily modified to produce a more coherent model, comparable to much larger models. Chronos Gold 12B-1.0 re-creates the uniqueness of the original Chronos with significiantly enhanced prompt adherence (following), coherence, a modern dataset, as well as supporting a majority of "character card" formats in applications like SillyTavern. It went through an iterative and objective merge process as my previous models and was further finetuned on a dataset curated for it. The specifics of the model will not be disclosed at the time due to dataset ownership. Instruct Template This model uses ChatML - below is an example. It is a preset in many frontends. <|im_start|>system A system prompt describing how you'd like your bot to act.<|im_end|> <|im_start|>user Hello there!<|im_end|> <|im_start|>assistant I can assist you or we can discuss other things?<|im_end|> <|im_start|>user I was wondering how transformers work?<|im_end|> <|im_start|>assistant Sampling Settings Nemo is a bit sensitive to high temperatures, so I use lower. Here are my settings: Temp - 0.7 (0.9 max) Presence Penalty - 1.0 Repetition Penalty range - 2800 Min P - 0.10 Additional Details This model was created by elinas on discord. Thank you to @kalomaze for providing a model that made this merge possible. This is one of multiple models to come out in the series by size and model architecture, so look forward to it! Contact me on Discord for inquiries. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Chronos-Gold-12B-1.0-Q4_K_S-GGUF --hf-file chronos-gold-12b-1.0-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Chronos-Gold-12B-1.0-Q4_K_S-GGUF --hf-file chronos-gold-12b-1.0-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Chronos-Gold-12B-1.0-Q4_K_S-GGUF --hf-file chronos-gold-12b-1.0-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Chronos-Gold-12B-1.0-Q4_K_S-GGUF --hf-file chronos-gold-12b-1.0-q4_k_s.gguf -c 2048 ```