File size: 4,529 Bytes
afac443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5f85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afac443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
base_model: Spestly/Athena-1-7B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- llama-cpp
- gguf-my-repo
license: apache-2.0
language:
- en
---

# Triangle104/Athena-1-7B-Q6_K-GGUF
This model was converted to GGUF format from [`Spestly/Athena-1-7B`](https://huggingface.co/Spestly/Athena-1-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Spestly/Athena-1-7B) for more details on the model.

---
Model details:
-
Athena-1 is a fine-tuned, instruction-following large language model derived from Qwen/Qwen2.5-7B-Instruct.
 Designed to balance efficiency and performance, Athena 7B provides 
powerful text-generation capabilities, making it suitable for a variety 
of real-world applications, including conversational AI, content 
creation, and structured data processing.




	
		
	

		Key Features
	




	
		
	

		๐Ÿš€ Enhanced Performance
	



Instruction Following: Fine-tuned for excellent adherence to user prompts and instructions.
Coding and Mathematics: Proficient in solving coding problems and mathematical reasoning.
Lightweight: At 7.62 billion parameters, Athena-1-7B offers powerful performance while maintaining efficiency.



	
		
	

		๐Ÿ“– Long-Context Understanding
	



Context Length: Supports up to 128K tokens, ensuring accurate handling of large documents or conversations.
Token Generation: Can generate up to 8K tokens of output.



	
		
	

		๐ŸŒ Multilingual Support
	



Supports 29+ languages, including:
English, Chinese, French, Spanish, Portuguese, German, Italian, Russian
Japanese, Korean, Vietnamese, Thai, Arabic, and more.





	
		
	

		๐Ÿ“Š Structured Data & Outputs
	



Structured Data Interpretation: Understands and processes structured formats like tables and JSON.
Structured Output Generation: Generates well-formatted outputs, including JSON and other structured formats.




	
		
	

		Model Details
	



Base Model: Qwen/Qwen2.5-7B-Instruct
Architecture: Transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias.
Parameters: 7.62B total (6.53B non-embedding).
Layers: 28
Attention Heads: 28 for Q, 4 for KV.
Context Length: Up to 131,072 tokens.




	
		
	

		Applications
	



Athena-1 is designed for a broad range of use cases:


Conversational AI: Create natural, human-like chatbot experiences.
Code Generation: Generate, debug, or explain code snippets.
Mathematical Problem Solving: Assist with complex calculations and reasoning.
Document Processing: Summarize or analyze large documents.
Multilingual Applications: Support for diverse languages for translation and global use cases.
Structured Data: Process and generate structured data, including tables and JSON.




	
		
	

		Quickstart
	



Hereโ€™s how you can use Athena 7B for quick text generation:


# Use a pipeline as a high-level helper
from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="Spestly/Athena-1-7B")
pipe(messages)

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Spestly/Athena-1-7B")
model = AutoModelForCausalLM.from_pretrained("Spestly/Athena-1-7B")

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Athena-1-7B-Q6_K-GGUF --hf-file athena-1-7b-q6_k.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Athena-1-7B-Q6_K-GGUF --hf-file athena-1-7b-q6_k.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Athena-1-7B-Q6_K-GGUF --hf-file athena-1-7b-q6_k.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Athena-1-7B-Q6_K-GGUF --hf-file athena-1-7b-q6_k.gguf -c 2048
```