File size: 1,967 Bytes
43c7d2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
library_name: peft
tags:
- parquet
- text-classification
datasets:
- tweet_eval
metrics:
- accuracy
base_model: CAMeL-Lab/bert-base-arabic-camelbert-mix-did-nadi
model-index:
- name: CAMeL-Lab_bert-base-arabic-camelbert-mix-did-nadi-finetuned-lora-tweet_eval_emotion
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: tweet_eval
config: emotion
split: validation
args: emotion
metrics:
- type: accuracy
value: 0.48663101604278075
name: accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CAMeL-Lab_bert-base-arabic-camelbert-mix-did-nadi-finetuned-lora-tweet_eval_emotion
This model is a fine-tuned version of [CAMeL-Lab/bert-base-arabic-camelbert-mix-did-nadi](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix-did-nadi) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- accuracy: 0.4866
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| accuracy | train_loss | epoch |
|:--------:|:----------:|:-----:|
| 0.3235 | None | 0 |
| 0.4572 | 1.2592 | 0 |
| 0.4813 | 1.2185 | 1 |
| 0.5027 | 1.1931 | 2 |
| 0.4866 | 1.1707 | 3 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2 |