--- tags: - generated_from_trainer model-index: - name: vit-base-patch16-224-imigue results: [] --- # vit-base-patch16-224-imigue This model is a fine-tuned [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k), on [TornikeO/imigue](https://huggingface.co/datasets/TornikeO/imigue/) micro-level emotion classification dataset. The evaluation performance is as follows (per-class evals are *precisions* for that particular class. F1 score is micro-averaged.): - eval_loss: 0.6450 - eval_accuracy: 0.8112 - eval_f1: 0.6905 - eval_arms_akimbo: 1.0 - eval_biting_nails: 0.0 - eval_buckle_button,_pulling_shirt_collar,_adjusting_tie: 0.8923 - eval_bulging_face,_deep_breath: 0.6162 - eval_covering_face: 0.8788 - eval_crossing_fingers: 0.8468 - eval_dustoffing_clothes: 0.77 - eval_folding_arms: 0.7598 - eval_head_up: 0.8182 - eval_hold_back_arms: 0.7015 - eval_illustrative_body_language: 0.8521 - eval_minaret_gesture: 0.9677 - eval_moving_torso: 0.7914 - eval_playing_with_or_adjusting_hair: 0.8393 - eval_playing_with_or_manipulating_objects: 0.9053 - eval_pressing_lips: 0.7363 - eval_putting_arms_behind_body: 0.0 - eval_rubbing_eyes: 0.8793 - eval_rubbing_or_holding_hands: 0.8180 - eval_scratching_back: 0.875 - eval_scratching_or_touching_arms: 0.7704 - eval_shaking_shoulders: 0.7051 - eval_sitting_upright: 0.7273 - eval_touching_ears: 0.8261 - eval_touching_hat: 0.9474 - eval_touching_jaw: 0.8979 - eval_touching_or_covering_suprasternal_notch: 1.0 - eval_touching_or_scratching_facial_parts: 0.8178 - eval_touching_or_scratching_forehead: 0.8 - eval_touching_or_scratching_head: 0.8913 - eval_touching_or_scratching_neck: 0.8788 - eval_turtle_neck: 1.0 - eval_runtime: 13.9155 - eval_samples_per_second: 869.752 - eval_steps_per_second: 3.449 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2