File size: 2,044 Bytes
5f9f7b4 771ad65 5f9f7b4 771ad65 5f9f7b4 771ad65 5f9f7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_female_british_english_speaker_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_female_british_english_speaker_2
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4968
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.4995 | 7.9208 | 100 | 0.4349 |
| 0.421 | 15.8416 | 200 | 0.4270 |
| 0.3934 | 23.7624 | 300 | 0.4447 |
| 0.3765 | 31.6832 | 400 | 0.4632 |
| 0.3665 | 39.6040 | 500 | 0.4657 |
| 0.3595 | 47.5248 | 600 | 0.4665 |
| 0.3455 | 55.4455 | 700 | 0.4821 |
| 0.3405 | 63.3663 | 800 | 0.4851 |
| 0.3349 | 71.2871 | 900 | 0.4916 |
| 0.3289 | 79.2079 | 1000 | 0.4928 |
| 0.329 | 87.1287 | 1100 | 0.4968 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|