--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_9_0 metrics: - wer model-index: - name: special3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_9_0 type: common_voice_9_0 config: id split: train args: id metrics: - name: Wer type: wer value: 0.1995279982836301 --- # special3 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_9_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0008 - Wer: 0.1995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 12 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0959 | 2.38 | 1000 | 0.0714 | 2.8063 | | 0.0152 | 4.75 | 2000 | 0.0111 | 0.4913 | | 0.0022 | 7.13 | 3000 | 0.0022 | 0.2060 | | 0.0014 | 9.5 | 4000 | 0.0011 | 0.2188 | | 0.0008 | 11.88 | 5000 | 0.0008 | 0.1995 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3