File size: 2,095 Bytes
0de13c4 e7d4c05 0de13c4 e7d4c05 0de13c4 e7d4c05 0de13c4 e7d4c05 0de13c4 e7d4c05 0de13c4 e7d4c05 0de13c4 e7d4c05 0de13c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
language:
- id
license: apache-2.0
base_model: openai/whisper-small
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_9_0
metrics:
- wer
model-index:
- name: Whisper Small Indonesian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_9_0 id
type: mozilla-foundation/common_voice_9_0
config: id
split: test
args: id
metrics:
- name: Wer
type: wer
value: 12.900851161720727
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Indonesian
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_9_0 id dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2320
- Wer: 12.9009
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.6518 | 0.21 | 1000 | 0.3087 | 18.9510 |
| 0.542 | 0.42 | 2000 | 0.2795 | 16.6966 |
| 0.4933 | 0.63 | 3000 | 0.2543 | 14.3041 |
| 0.4943 | 0.85 | 4000 | 0.2435 | 13.5036 |
| 0.2716 | 1.06 | 5000 | 0.2320 | 12.9009 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|