TheBloke commited on
Commit
4a0c8fd
·
1 Parent(s): 01b52a1

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +452 -0
README.md ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: m42-health/med42-70b
3
+ inference: false
4
+ language:
5
+ - en
6
+ license: other
7
+ license_name: med42
8
+ model_creator: M42 Health
9
+ model_name: Med42 70B
10
+ model_type: llama
11
+ pipeline_tag: text-generation
12
+ prompt_template: '<|system|>: You are a helpful medical assistant created by M42 Health
13
+ in the UAE.
14
+
15
+ <|prompter|>:{prompt}
16
+
17
+ <|assistant|>:
18
+
19
+ '
20
+ quantized_by: TheBloke
21
+ tags:
22
+ - m42
23
+ - health
24
+ - healthcare
25
+ - clinical-llm
26
+ ---
27
+ <!-- markdownlint-disable MD041 -->
28
+
29
+ <!-- header start -->
30
+ <!-- 200823 -->
31
+ <div style="width: auto; margin-left: auto; margin-right: auto">
32
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
33
+ </div>
34
+ <div style="display: flex; justify-content: space-between; width: 100%;">
35
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
36
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
37
+ </div>
38
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
39
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
40
+ </div>
41
+ </div>
42
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
43
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
44
+ <!-- header end -->
45
+
46
+ # Med42 70B - AWQ
47
+ - Model creator: [M42 Health](https://huggingface.co/m42-health)
48
+ - Original model: [Med42 70B](https://huggingface.co/m42-health/med42-70b)
49
+
50
+ <!-- description start -->
51
+ ## Description
52
+
53
+ This repo contains AWQ model files for [M42 Health's Med42 70B](https://huggingface.co/m42-health/med42-70b).
54
+
55
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
56
+
57
+
58
+ ### About AWQ
59
+
60
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
61
+
62
+ It is supported by:
63
+
64
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
65
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
66
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
67
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
68
+
69
+ <!-- description end -->
70
+ <!-- repositories-available start -->
71
+ ## Repositories available
72
+
73
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/med42-70B-AWQ)
74
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/med42-70B-GPTQ)
75
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/med42-70B-GGUF)
76
+ * [M42 Health's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/m42-health/med42-70b)
77
+ <!-- repositories-available end -->
78
+
79
+ <!-- prompt-template start -->
80
+ ## Prompt template: Med42
81
+
82
+ ```
83
+ <|system|>: You are a helpful medical assistant created by M42 Health in the UAE.
84
+ <|prompter|>:{prompt}
85
+ <|assistant|>:
86
+
87
+ ```
88
+
89
+ <!-- prompt-template end -->
90
+ <!-- licensing start -->
91
+ ## Licensing
92
+
93
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
94
+
95
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
96
+
97
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [M42 Health's Med42 70B](https://huggingface.co/m42-health/med42-70b).
98
+ <!-- licensing end -->
99
+ <!-- README_AWQ.md-provided-files start -->
100
+ ## Provided files, and AWQ parameters
101
+
102
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
103
+
104
+ Models are released as sharded safetensors files.
105
+
106
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
107
+ | ------ | ---- | -- | ----------- | ------- | ---- |
108
+ | [main](https://huggingface.co/TheBloke/med42-70B-AWQ/tree/main) | 4 | 128 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 4096 | 36.61 GB
109
+
110
+ <!-- README_AWQ.md-provided-files end -->
111
+
112
+ <!-- README_AWQ.md-text-generation-webui start -->
113
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
114
+
115
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
116
+
117
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
118
+
119
+ 1. Click the **Model tab**.
120
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/med42-70B-AWQ`.
121
+ 3. Click **Download**.
122
+ 4. The model will start downloading. Once it's finished it will say "Done".
123
+ 5. In the top left, click the refresh icon next to **Model**.
124
+ 6. In the **Model** dropdown, choose the model you just downloaded: `med42-70B-AWQ`
125
+ 7. Select **Loader: AutoAWQ**.
126
+ 8. Click Load, and the model will load and is now ready for use.
127
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
128
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
129
+ <!-- README_AWQ.md-text-generation-webui end -->
130
+
131
+ <!-- README_AWQ.md-use-from-vllm start -->
132
+ ## Multi-user inference server: vLLM
133
+
134
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
135
+
136
+ - Please ensure you are using vLLM version 0.2 or later.
137
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
138
+
139
+ For example:
140
+
141
+ ```shell
142
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/med42-70B-AWQ --quantization awq
143
+ ```
144
+
145
+ - When using vLLM from Python code, again set `quantization=awq`.
146
+
147
+ For example:
148
+
149
+ ```python
150
+ from vllm import LLM, SamplingParams
151
+
152
+ prompts = [
153
+ "Tell me about AI",
154
+ "Write a story about llamas",
155
+ "What is 291 - 150?",
156
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
157
+ ]
158
+ prompt_template=f'''<|system|>: You are a helpful medical assistant created by M42 Health in the UAE.
159
+ <|prompter|>:{prompt}
160
+ <|assistant|>:
161
+ '''
162
+
163
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
164
+
165
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
166
+
167
+ llm = LLM(model="TheBloke/med42-70B-AWQ", quantization="awq", dtype="auto")
168
+
169
+ outputs = llm.generate(prompts, sampling_params)
170
+
171
+ # Print the outputs.
172
+ for output in outputs:
173
+ prompt = output.prompt
174
+ generated_text = output.outputs[0].text
175
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
176
+ ```
177
+ <!-- README_AWQ.md-use-from-vllm start -->
178
+
179
+ <!-- README_AWQ.md-use-from-tgi start -->
180
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
181
+
182
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
183
+
184
+ Example Docker parameters:
185
+
186
+ ```shell
187
+ --model-id TheBloke/med42-70B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
188
+ ```
189
+
190
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
191
+
192
+ ```shell
193
+ pip3 install huggingface-hub
194
+ ```
195
+
196
+ ```python
197
+ from huggingface_hub import InferenceClient
198
+
199
+ endpoint_url = "https://your-endpoint-url-here"
200
+
201
+ prompt = "Tell me about AI"
202
+ prompt_template=f'''<|system|>: You are a helpful medical assistant created by M42 Health in the UAE.
203
+ <|prompter|>:{prompt}
204
+ <|assistant|>:
205
+ '''
206
+
207
+ client = InferenceClient(endpoint_url)
208
+ response = client.text_generation(prompt,
209
+ max_new_tokens=128,
210
+ do_sample=True,
211
+ temperature=0.7,
212
+ top_p=0.95,
213
+ top_k=40,
214
+ repetition_penalty=1.1)
215
+
216
+ print(f"Model output: ", response)
217
+ ```
218
+ <!-- README_AWQ.md-use-from-tgi end -->
219
+
220
+ <!-- README_AWQ.md-use-from-python start -->
221
+ ## Inference from Python code using AutoAWQ
222
+
223
+ ### Install the AutoAWQ package
224
+
225
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.1 or later.
226
+
227
+ ```shell
228
+ pip3 install autoawq
229
+ ```
230
+
231
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
232
+
233
+ ```shell
234
+ pip3 uninstall -y autoawq
235
+ git clone https://github.com/casper-hansen/AutoAWQ
236
+ cd AutoAWQ
237
+ pip3 install .
238
+ ```
239
+
240
+ ### AutoAWQ example code
241
+
242
+ ```python
243
+ from awq import AutoAWQForCausalLM
244
+ from transformers import AutoTokenizer
245
+
246
+ model_name_or_path = "TheBloke/med42-70B-AWQ"
247
+
248
+ # Load tokenizer
249
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
250
+ # Load model
251
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
252
+ trust_remote_code=False, safetensors=True)
253
+
254
+ prompt = "Tell me about AI"
255
+ prompt_template=f'''<|system|>: You are a helpful medical assistant created by M42 Health in the UAE.
256
+ <|prompter|>:{prompt}
257
+ <|assistant|>:
258
+ '''
259
+
260
+ print("*** Running model.generate:")
261
+
262
+ token_input = tokenizer(
263
+ prompt_template,
264
+ return_tensors='pt'
265
+ ).input_ids.cuda()
266
+
267
+ # Generate output
268
+ generation_output = model.generate(
269
+ token_input,
270
+ do_sample=True,
271
+ temperature=0.7,
272
+ top_p=0.95,
273
+ top_k=40,
274
+ max_new_tokens=512
275
+ )
276
+
277
+ # Get the tokens from the output, decode them, print them
278
+ token_output = generation_output[0]
279
+ text_output = tokenizer.decode(token_output)
280
+ print("LLM output: ", text_output)
281
+
282
+ """
283
+ # Inference should be possible with transformers pipeline as well in future
284
+ # But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
285
+ from transformers import pipeline
286
+
287
+ print("*** Pipeline:")
288
+ pipe = pipeline(
289
+ "text-generation",
290
+ model=model,
291
+ tokenizer=tokenizer,
292
+ max_new_tokens=512,
293
+ do_sample=True,
294
+ temperature=0.7,
295
+ top_p=0.95,
296
+ top_k=40,
297
+ repetition_penalty=1.1
298
+ )
299
+
300
+ print(pipe(prompt_template)[0]['generated_text'])
301
+ """
302
+ ```
303
+ <!-- README_AWQ.md-use-from-python end -->
304
+
305
+ <!-- README_AWQ.md-compatibility start -->
306
+ ## Compatibility
307
+
308
+ The files provided are tested to work with:
309
+
310
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
311
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
312
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
313
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
314
+
315
+ <!-- README_AWQ.md-compatibility end -->
316
+
317
+ <!-- footer start -->
318
+ <!-- 200823 -->
319
+ ## Discord
320
+
321
+ For further support, and discussions on these models and AI in general, join us at:
322
+
323
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
324
+
325
+ ## Thanks, and how to contribute
326
+
327
+ Thanks to the [chirper.ai](https://chirper.ai) team!
328
+
329
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
330
+
331
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
332
+
333
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
334
+
335
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
336
+
337
+ * Patreon: https://patreon.com/TheBlokeAI
338
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
339
+
340
+ **Special thanks to**: Aemon Algiz.
341
+
342
+ **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
343
+
344
+
345
+ Thank you to all my generous patrons and donaters!
346
+
347
+ And thank you again to a16z for their generous grant.
348
+
349
+ <!-- footer end -->
350
+
351
+ # Original model card: M42 Health's Med42 70B
352
+
353
+ # **Med42 - Clinical Large Language Model**
354
+ Med42 is an open-access clinical large language model (LLM) developed by M42 to expand access to medical knowledge. Built off LLaMA-2 and comprising 70 billion parameters, this generative AI system provides high-quality answers to medical questions.
355
+
356
+ ## Model Details
357
+ *Note: Use of this model is governed by the M42 Health license. In order to download the model weights (and tokenizer), please read the [Med42 License](https://huggingface.co/spaces/m42-health/License) and accept our License by requesting access here.*
358
+
359
+ Beginning with the base LLaMa-2 model, Med42 was instruction-tuned on a dataset of ~250M tokens compiled from different open-access sources, including medical flashcards, exam questions, and open-domain dialogues.
360
+
361
+ **Model Developers:** M42 Health AI Team
362
+
363
+ **Finetuned from model:** Llama-2 - 70B
364
+
365
+ **Context length:** 4k tokens
366
+
367
+ **Input:** Text only data
368
+
369
+ **Output:** Model generates text only
370
+
371
+ **Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we enhance model's performance.
372
+
373
+ **License:** A custom license is available [here](https://huggingface.co/spaces/m42-health/License)
374
+
375
+ **Research Paper:** TBA
376
+
377
+ ## Intended Use
378
+ Med42 is being made available for further testing and assessment as an AI assistant to enhance clinical decision-making and enhance access to an LLM for healthcare use. Potential use cases include:
379
+ - Medical question answering
380
+ - Patient record summarization
381
+ - Aiding medical diagnosis
382
+ - General health Q&A
383
+
384
+ To get the expected features and performance for the model, a specific formatting needs to be followed, including the `<|system|>`, `<|prompter|>` and `<|assistant|>` tags.
385
+
386
+ ```python
387
+ from transformers import AutoModelForCausalLM, AutoTokenizer
388
+
389
+ model_name_or_path = "m42-health/med42-70b"
390
+
391
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
392
+ device_map="auto")
393
+
394
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
395
+
396
+ prompt = "What are the symptoms of diabetes ?"
397
+ prompt_template=f'''
398
+ <|system|>: You are a helpful medical assistant created by M42 Health in the UAE.
399
+ <|prompter|>:{prompt}
400
+ <|assistant|>:
401
+ '''
402
+
403
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
404
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True,eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, max_new_tokens=512)
405
+ print(tokenizer.decode(output[0]))
406
+ ```
407
+
408
+ ## Hardware and Software
409
+
410
+ The training process was performed on the Condor Galaxy 1 (CG-1) supercomputer platform.
411
+
412
+
413
+ ## Evaluation Results
414
+
415
+ Med42 achieves achieves competitive performance on various medical benchmarks, including MedQA, MedMCQA, PubMedQA, HeadQA, and Measuring Massive Multitask Language Understanding (MMLU) clinical topics. For all evaluations reported so far, we use [EleutherAI's evaluation harness library](https://github.com/EleutherAI/lm-evaluation-harness) and report zero-shot accuracies (except otherwise stated). We compare the performance with that reported for other models (ClinicalCamel-70B, GPT-3.5, GPT-4.0, Med-PaLM 2).
416
+
417
+ |Dataset|Med42|ClinicalCamel-70B|GPT-3.5|GPT-4.0|Med-PaLM-2 (5-shot)*|
418
+ |---|---|---|---|---|---|
419
+ |MMLU Clinical Knowledge|74.3|69.8|69.8|86.0|88.3|
420
+ |MMLU College Biology|84.0|79.2|72.2|95.1|94.4|
421
+ |MMLU College Medicine|68.8|67.0|61.3|76.9|80.9|
422
+ |MMLU Medical Genetics|86.0|69.0|70.0|91.0|90.0|
423
+ |MMLU Professional Medicine|79.8|71.3|70.2|93.0|95.2|
424
+ |MMLU Anatomy|67.4|62.2|56.3|80.0|77.8|
425
+ |MedMCQA|60.9|47.0|50.1|69.5|71.3|
426
+ |MedQA|61.5|53.4|50.8|78.9|79.7|
427
+ |USMLE Self-Assessment|71.7|-|49.1|83.8|-|
428
+ |USMLE Sample Exam|72.0|54.3|56.9|84.3|-|
429
+
430
+ **We note that 0-shot performance is not reported for Med-PaLM 2. Further details can be found at [https://github.com/m42health/med42](https://github.com/m42health/med42)*.
431
+
432
+
433
+ ### Key performance metrics:
434
+ - Med42 achieves a 72% accuracy on the US Medical Licensing Examination (USMLE) sample exam, surpassing the prior state of the art among openly available medical LLMs.
435
+ - 61.5% on MedQA dataset (compared to 50.8% for GPT-3.5)
436
+ - Consistently higher performance on MMLU clinical topics compared to GPT-3.5.
437
+
438
+ ## Limitations & Safe Use
439
+ - Med42 is not ready for real clinical use. Extensive human evaluation is undergoing as it is required to ensure safety.
440
+ - Potential for generating incorrect or harmful information.
441
+ - Risk of perpetuating biases in training data.
442
+
443
+ Use this model responsibly! Do not rely on it for medical usage without rigorous safety testing.
444
+
445
+ ## Accessing Med42 and Reporting Issues
446
+
447
+ Please report any software "bug" or other problems through one of the following means:
448
+
449
+ - Reporting issues with the model: [https://github.com/m42health/med42](https://github.com/m42health/med42)
450
+ - Reporting risky content generated by the model, bugs and/or any security concerns: [https://forms.office.com/r/YMJu3kcKat](https://forms.office.com/r/YMJu3kcKat)
451
+ - M42’s privacy policy available at [https://m42.ae/privacy-policy/](https://m42.ae/privacy-policy/)
452
+ - Reporting violations of the Acceptable Use Policy or unlicensed uses of Med42: <[email protected]>