TheBloke commited on
Commit
21c6d36
·
1 Parent(s): 3efd5e7

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +455 -0
README.md ADDED
@@ -0,0 +1,455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: llmware/dragon-yi-6b-v0
3
+ inference: false
4
+ license: other
5
+ license_link: https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE
6
+ license_name: yi-license
7
+ model_creator: llmware
8
+ model_name: Dragon Yi 6B v0
9
+ model_type: yi
10
+ prompt_template: '<human>: {prompt}
11
+
12
+ <bot>:
13
+
14
+ '
15
+ quantized_by: TheBloke
16
+ ---
17
+ <!-- markdownlint-disable MD041 -->
18
+
19
+ <!-- header start -->
20
+ <!-- 200823 -->
21
+ <div style="width: auto; margin-left: auto; margin-right: auto">
22
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
23
+ </div>
24
+ <div style="display: flex; justify-content: space-between; width: 100%;">
25
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
26
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
27
+ </div>
28
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
29
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
30
+ </div>
31
+ </div>
32
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
33
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
34
+ <!-- header end -->
35
+
36
+ # Dragon Yi 6B v0 - AWQ
37
+ - Model creator: [llmware](https://huggingface.co/llmware)
38
+ - Original model: [Dragon Yi 6B v0](https://huggingface.co/llmware/dragon-yi-6b-v0)
39
+
40
+ <!-- description start -->
41
+ ## Description
42
+
43
+ This repo contains AWQ model files for [llmware's Dragon Yi 6B v0](https://huggingface.co/llmware/dragon-yi-6b-v0).
44
+
45
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
46
+
47
+
48
+ ### About AWQ
49
+
50
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
51
+
52
+ It is supported by:
53
+
54
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
55
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
56
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
57
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
58
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
59
+
60
+ <!-- description end -->
61
+ <!-- repositories-available start -->
62
+ ## Repositories available
63
+
64
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/dragon-yi-6B-v0-AWQ)
65
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/dragon-yi-6B-v0-GPTQ)
66
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/dragon-yi-6B-v0-GGUF)
67
+ * [llmware's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/llmware/dragon-yi-6b-v0)
68
+ <!-- repositories-available end -->
69
+
70
+ <!-- prompt-template start -->
71
+ ## Prompt template: human-bot
72
+
73
+ ```
74
+ <human>: {prompt}
75
+ <bot>:
76
+
77
+ ```
78
+
79
+ <!-- prompt-template end -->
80
+
81
+
82
+ <!-- README_AWQ.md-provided-files start -->
83
+ ## Provided files, and AWQ parameters
84
+
85
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
86
+
87
+ Models are released as sharded safetensors files.
88
+
89
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
90
+ | ------ | ---- | -- | ----------- | ------- | ---- |
91
+ | [main](https://huggingface.co/TheBloke/dragon-yi-6B-v0-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 4096 | 3.93 GB
92
+
93
+ <!-- README_AWQ.md-provided-files end -->
94
+
95
+ <!-- README_AWQ.md-text-generation-webui start -->
96
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
97
+
98
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
99
+
100
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
101
+
102
+ 1. Click the **Model tab**.
103
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/dragon-yi-6B-v0-AWQ`.
104
+ 3. Click **Download**.
105
+ 4. The model will start downloading. Once it's finished it will say "Done".
106
+ 5. In the top left, click the refresh icon next to **Model**.
107
+ 6. In the **Model** dropdown, choose the model you just downloaded: `dragon-yi-6B-v0-AWQ`
108
+ 7. Select **Loader: AutoAWQ**.
109
+ 8. Click Load, and the model will load and is now ready for use.
110
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
111
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
112
+ <!-- README_AWQ.md-text-generation-webui end -->
113
+
114
+ <!-- README_AWQ.md-use-from-vllm start -->
115
+ ## Multi-user inference server: vLLM
116
+
117
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
118
+
119
+ - Please ensure you are using vLLM version 0.2 or later.
120
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
121
+
122
+ For example:
123
+
124
+ ```shell
125
+ python3 -m vllm.entrypoints.api_server --model TheBloke/dragon-yi-6B-v0-AWQ --quantization awq --dtype auto
126
+ ```
127
+
128
+ - When using vLLM from Python code, again set `quantization=awq`.
129
+
130
+ For example:
131
+
132
+ ```python
133
+ from vllm import LLM, SamplingParams
134
+
135
+ prompts = [
136
+ "Tell me about AI",
137
+ "Write a story about llamas",
138
+ "What is 291 - 150?",
139
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
140
+ ]
141
+ prompt_template=f'''<human>: {prompt}
142
+ <bot>:
143
+ '''
144
+
145
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
146
+
147
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
148
+
149
+ llm = LLM(model="TheBloke/dragon-yi-6B-v0-AWQ", quantization="awq", dtype="auto")
150
+
151
+ outputs = llm.generate(prompts, sampling_params)
152
+
153
+ # Print the outputs.
154
+ for output in outputs:
155
+ prompt = output.prompt
156
+ generated_text = output.outputs[0].text
157
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
158
+ ```
159
+ <!-- README_AWQ.md-use-from-vllm start -->
160
+
161
+ <!-- README_AWQ.md-use-from-tgi start -->
162
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
163
+
164
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
165
+
166
+ Example Docker parameters:
167
+
168
+ ```shell
169
+ --model-id TheBloke/dragon-yi-6B-v0-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
170
+ ```
171
+
172
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
173
+
174
+ ```shell
175
+ pip3 install huggingface-hub
176
+ ```
177
+
178
+ ```python
179
+ from huggingface_hub import InferenceClient
180
+
181
+ endpoint_url = "https://your-endpoint-url-here"
182
+
183
+ prompt = "Tell me about AI"
184
+ prompt_template=f'''<human>: {prompt}
185
+ <bot>:
186
+ '''
187
+
188
+ client = InferenceClient(endpoint_url)
189
+ response = client.text_generation(prompt,
190
+ max_new_tokens=128,
191
+ do_sample=True,
192
+ temperature=0.7,
193
+ top_p=0.95,
194
+ top_k=40,
195
+ repetition_penalty=1.1)
196
+
197
+ print(f"Model output: ", response)
198
+ ```
199
+ <!-- README_AWQ.md-use-from-tgi end -->
200
+
201
+ <!-- README_AWQ.md-use-from-python start -->
202
+ ## Inference from Python code using Transformers
203
+
204
+ ### Install the necessary packages
205
+
206
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
207
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
208
+
209
+ ```shell
210
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
211
+ ```
212
+
213
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
214
+
215
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
216
+
217
+ ```shell
218
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
219
+ ```
220
+
221
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
222
+
223
+ ```shell
224
+ pip3 uninstall -y autoawq
225
+ git clone https://github.com/casper-hansen/AutoAWQ
226
+ cd AutoAWQ
227
+ pip3 install .
228
+ ```
229
+
230
+ ### Transformers example code (requires Transformers 4.35.0 and later)
231
+
232
+ ```python
233
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
234
+
235
+ model_name_or_path = "TheBloke/dragon-yi-6B-v0-AWQ"
236
+
237
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
238
+ model = AutoModelForCausalLM.from_pretrained(
239
+ model_name_or_path,
240
+ low_cpu_mem_usage=True,
241
+ device_map="cuda:0"
242
+ )
243
+
244
+ # Using the text streamer to stream output one token at a time
245
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
246
+
247
+ prompt = "Tell me about AI"
248
+ prompt_template=f'''<human>: {prompt}
249
+ <bot>:
250
+ '''
251
+
252
+ # Convert prompt to tokens
253
+ tokens = tokenizer(
254
+ prompt_template,
255
+ return_tensors='pt'
256
+ ).input_ids.cuda()
257
+
258
+ generation_params = {
259
+ "do_sample": True,
260
+ "temperature": 0.7,
261
+ "top_p": 0.95,
262
+ "top_k": 40,
263
+ "max_new_tokens": 512,
264
+ "repetition_penalty": 1.1
265
+ }
266
+
267
+ # Generate streamed output, visible one token at a time
268
+ generation_output = model.generate(
269
+ tokens,
270
+ streamer=streamer,
271
+ **generation_params
272
+ )
273
+
274
+ # Generation without a streamer, which will include the prompt in the output
275
+ generation_output = model.generate(
276
+ tokens,
277
+ **generation_params
278
+ )
279
+
280
+ # Get the tokens from the output, decode them, print them
281
+ token_output = generation_output[0]
282
+ text_output = tokenizer.decode(token_output)
283
+ print("model.generate output: ", text_output)
284
+
285
+ # Inference is also possible via Transformers' pipeline
286
+ from transformers import pipeline
287
+
288
+ pipe = pipeline(
289
+ "text-generation",
290
+ model=model,
291
+ tokenizer=tokenizer,
292
+ **generation_params
293
+ )
294
+
295
+ pipe_output = pipe(prompt_template)[0]['generated_text']
296
+ print("pipeline output: ", pipe_output)
297
+
298
+ ```
299
+ <!-- README_AWQ.md-use-from-python end -->
300
+
301
+ <!-- README_AWQ.md-compatibility start -->
302
+ ## Compatibility
303
+
304
+ The files provided are tested to work with:
305
+
306
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
307
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
308
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
309
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
310
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
311
+
312
+ <!-- README_AWQ.md-compatibility end -->
313
+
314
+ <!-- footer start -->
315
+ <!-- 200823 -->
316
+ ## Discord
317
+
318
+ For further support, and discussions on these models and AI in general, join us at:
319
+
320
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
321
+
322
+ ## Thanks, and how to contribute
323
+
324
+ Thanks to the [chirper.ai](https://chirper.ai) team!
325
+
326
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
327
+
328
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
329
+
330
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
331
+
332
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
333
+
334
+ * Patreon: https://patreon.com/TheBlokeAI
335
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
336
+
337
+ **Special thanks to**: Aemon Algiz.
338
+
339
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
340
+
341
+
342
+ Thank you to all my generous patrons and donaters!
343
+
344
+ And thank you again to a16z for their generous grant.
345
+
346
+ <!-- footer end -->
347
+
348
+ # Original model card: llmware's Dragon Yi 6B v0
349
+
350
+
351
+ # Model Card for Model ID
352
+
353
+ <!-- Provide a quick summary of what the model is/does. -->
354
+
355
+ dragon-yi-6b-v0 part of the dRAGon ("Delivering RAG On ...") model series, RAG-instruct trained on top of a Yi-6B base model.
356
+
357
+ DRAGON models have been fine-tuned with the specific objective of fact-based question-answering over complex business and legal documents with an emphasis on reducing hallucinations and providing short, clear answers for workflow automation.
358
+
359
+
360
+ ### Benchmark Tests
361
+
362
+ Evaluated against the benchmark test: [RAG-Instruct-Benchmark-Tester](https://www.huggingface.co/datasets/llmware/rag_instruct_benchmark_tester)
363
+ Average of 2 Test Runs with 1 point for correct answer, 0.5 point for partial correct or blank / NF, 0.0 points for incorrect, and -1 points for hallucinations.
364
+
365
+ --**Accuracy Score**: **99.5** correct out of 100
366
+ --Not Found Classification: 90.0%
367
+ --Boolean: 87.5%
368
+ --Math/Logic: 77.5%
369
+ --Complex Questions (1-5): 4 (Above Average)
370
+ --Summarization Quality (1-5): 4 (Above Average)
371
+ --Hallucinations: No hallucinations observed in test runs.
372
+
373
+ For test run results (and good indicator of target use cases), please see the files ("core_rag_test" and "answer_sheet" in this repo).
374
+
375
+ ### Model Description
376
+
377
+ <!-- Provide a longer summary of what this model is. -->
378
+
379
+ - **Developed by:** llmware
380
+ - **Model type:** Yi
381
+ - **Language(s) (NLP):** English
382
+ - **License:** Yi License [Link](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE)
383
+ - **Finetuned from model:** Yi-6B
384
+
385
+
386
+ ### Direct Use
387
+
388
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
389
+
390
+ DRAGON is designed for enterprise automation use cases, especially in knowledge-intensive industries, such as financial services,
391
+ legal and regulatory industries with complex information sources.
392
+
393
+ DRAGON models have been trained for common RAG scenarios, specifically: question-answering, key-value extraction, and basic summarization as the core instruction types
394
+ without the need for a lot of complex instruction verbiage - provide a text passage context, ask questions, and get clear fact-based responses.
395
+
396
+ This model is licensed according to the terms of the license of the base model, Yi-6B, at this [link](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE).
397
+
398
+
399
+ ## Bias, Risks, and Limitations
400
+
401
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
402
+
403
+ Any model can provide inaccurate or incomplete information, and should be used in conjunction with appropriate safeguards and fact-checking mechanisms.
404
+
405
+
406
+ ## How to Get Started with the Model
407
+
408
+ The fastest way to get started with BLING is through direct import in transformers:
409
+
410
+ from transformers import AutoTokenizer, AutoModelForCausalLM
411
+ tokenizer = AutoTokenizer.from_pretrained("dragon-yi-6b-v0")
412
+ model = AutoModelForCausalLM.from_pretrained("dragon-yi-6b-v0")
413
+
414
+ Please refer to the generation_test .py files in the Files repository, which includes 200 samples and script to test the model. The **generation_test_llmware_script.py** includes built-in llmware capabilities for fact-checking, as well as easy integration with document parsing and actual retrieval to swap out the test set for RAG workflow consisting of business documents.
415
+
416
+ The DRAGON model was fine-tuned with a simple "\<human> and \<bot> wrapper", so to get the best results, wrap inference entries as:
417
+
418
+ full_prompt = "<human>: " + my_prompt + "\n" + "<bot>:"
419
+
420
+ The BLING model was fine-tuned with closed-context samples, which assume generally that the prompt consists of two sub-parts:
421
+
422
+ 1. Text Passage Context, and
423
+ 2. Specific question or instruction based on the text passage
424
+
425
+ To get the best results, package "my_prompt" as follows:
426
+
427
+ my_prompt = {{text_passage}} + "\n" + {{question/instruction}}
428
+
429
+
430
+ If you are using a HuggingFace generation script:
431
+
432
+ # prepare prompt packaging used in fine-tuning process
433
+ new_prompt = "<human>: " + entries["context"] + "\n" + entries["query"] + "\n" + "<bot>:"
434
+
435
+ inputs = tokenizer(new_prompt, return_tensors="pt")
436
+ start_of_output = len(inputs.input_ids[0])
437
+
438
+ # temperature: set at 0.3 for consistency of output
439
+ # max_new_tokens: set at 100 - may prematurely stop a few of the summaries
440
+
441
+ outputs = model.generate(
442
+ inputs.input_ids.to(device),
443
+ eos_token_id=tokenizer.eos_token_id,
444
+ pad_token_id=tokenizer.eos_token_id,
445
+ do_sample=True,
446
+ temperature=0.3,
447
+ max_new_tokens=100,
448
+ )
449
+
450
+ output_only = tokenizer.decode(outputs[0][start_of_output:],skip_special_tokens=True)
451
+
452
+
453
+ ## Model Card Contact
454
+
455
+ Darren Oberst & llmware team