File size: 27,418 Bytes
2ceade0
 
 
0f9c5cb
 
 
2ceade0
0c23a00
 
 
2ceade0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c23a00
2ceade0
 
0c23a00
2ceade0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c23a00
2ceade0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
---
license: llama2
model_name: Xwin-LM 70B V0.1
base_model: Xwin-LM/Xwin-LM-70b-V0.1
inference: false
model_creator: Xwin-LM
model_type: llama
prompt_template: 'A chat between a curious user and an artificial intelligence assistant.
  The assistant gives helpful, detailed, and polite answers to the user''s questions.
  USER: {prompt} ASSISTANT:

  '
quantized_by: TheBloke
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Xwin-LM 70B V0.1 - GGUF
- Model creator: [Xwin-LM](https://huggingface.co/Xwin-LM)
- Original model: [Xwin-LM 70B V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-70b-V0.1)

<!-- description start -->
## Description

This repo contains GGUF format model files for [Xwin-LM's Xwin-LM 70B V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-70b-V0.1).

<!-- description end -->
<!-- README_GGUF.md-about-gguf start -->
### About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Here is an incomplate list of clients and libraries that are known to support GGUF:

* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.

<!-- README_GGUF.md-about-gguf end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Xwin-LM-70B-V0.1-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Xwin-LM-70B-V0.1-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Xwin-LM-70B-V0.1-GGUF)
* [Xwin-LM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Xwin-LM/Xwin-LM-70b-V0.1)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: Vicuna

```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:

```

<!-- prompt-template end -->


<!-- compatibility_gguf start -->
## Compatibility

These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)

They are also compatible with many third party UIs and libraries - please see the list at the top of this README.

## Explanation of quantisation methods
<details>
  <summary>Click to see details</summary>

The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->

<!-- README_GGUF.md-provided-files start -->
## Provided files

| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [xwin-lm-70b-v0.1.Q2_K.gguf](https://huggingface.co/TheBloke/Xwin-LM-70B-V0.1-GGUF/blob/main/xwin-lm-70b-v0.1.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
| [xwin-lm-70b-v0.1.Q3_K_S.gguf](https://huggingface.co/TheBloke/Xwin-LM-70B-V0.1-GGUF/blob/main/xwin-lm-70b-v0.1.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
| [xwin-lm-70b-v0.1.Q3_K_M.gguf](https://huggingface.co/TheBloke/Xwin-LM-70B-V0.1-GGUF/blob/main/xwin-lm-70b-v0.1.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
| [xwin-lm-70b-v0.1.Q3_K_L.gguf](https://huggingface.co/TheBloke/Xwin-LM-70B-V0.1-GGUF/blob/main/xwin-lm-70b-v0.1.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
| [xwin-lm-70b-v0.1.Q4_0.gguf](https://huggingface.co/TheBloke/Xwin-LM-70B-V0.1-GGUF/blob/main/xwin-lm-70b-v0.1.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [xwin-lm-70b-v0.1.Q4_K_S.gguf](https://huggingface.co/TheBloke/Xwin-LM-70B-V0.1-GGUF/blob/main/xwin-lm-70b-v0.1.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
| [xwin-lm-70b-v0.1.Q4_K_M.gguf](https://huggingface.co/TheBloke/Xwin-LM-70B-V0.1-GGUF/blob/main/xwin-lm-70b-v0.1.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
| [xwin-lm-70b-v0.1.Q5_0.gguf](https://huggingface.co/TheBloke/Xwin-LM-70B-V0.1-GGUF/blob/main/xwin-lm-70b-v0.1.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [xwin-lm-70b-v0.1.Q5_K_S.gguf](https://huggingface.co/TheBloke/Xwin-LM-70B-V0.1-GGUF/blob/main/xwin-lm-70b-v0.1.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended |
| [xwin-lm-70b-v0.1.Q5_K_M.gguf](https://huggingface.co/TheBloke/Xwin-LM-70B-V0.1-GGUF/blob/main/xwin-lm-70b-v0.1.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended |
| xwin-lm-70b-v0.1.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss |
| xwin-lm-70b-v0.1.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended |

**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

### Q6_K and Q8_0 files are split and require joining

**Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files.

<details>
  <summary>Click for instructions regarding Q6_K and Q8_0 files</summary>
   
### q6_K 
Please download:
* `xwin-lm-70b-v0.1.Q6_K.gguf-split-a`
* `xwin-lm-70b-v0.1.Q6_K.gguf-split-b`

### q8_0
Please download:
* `xwin-lm-70b-v0.1.Q8_0.gguf-split-a`
* `xwin-lm-70b-v0.1.Q8_0.gguf-split-b`

To join the files, do the following:

Linux and macOS:
```
cat xwin-lm-70b-v0.1.Q6_K.gguf-split-* > xwin-lm-70b-v0.1.Q6_K.gguf && rm xwin-lm-70b-v0.1.Q6_K.gguf-split-*
cat xwin-lm-70b-v0.1.Q8_0.gguf-split-* > xwin-lm-70b-v0.1.Q8_0.gguf && rm xwin-lm-70b-v0.1.Q8_0.gguf-split-*
```
Windows command line:
```
COPY /B xwin-lm-70b-v0.1.Q6_K.gguf-split-a + xwin-lm-70b-v0.1.Q6_K.gguf-split-b xwin-lm-70b-v0.1.Q6_K.gguf
del xwin-lm-70b-v0.1.Q6_K.gguf-split-a xwin-lm-70b-v0.1.Q6_K.gguf-split-b

COPY /B xwin-lm-70b-v0.1.Q8_0.gguf-split-a + xwin-lm-70b-v0.1.Q8_0.gguf-split-b xwin-lm-70b-v0.1.Q8_0.gguf
del xwin-lm-70b-v0.1.Q8_0.gguf-split-a xwin-lm-70b-v0.1.Q8_0.gguf-split-b
```

</details>
<!-- README_GGUF.md-provided-files end -->

<!-- README_GGUF.md-how-to-download start -->
## How to download GGUF files

**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.

The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
- LM Studio
- LoLLMS Web UI
- Faraday.dev

### In `text-generation-webui`

Under Download Model, you can enter the model repo: TheBloke/Xwin-LM-70B-V0.1-GGUF and below it, a specific filename to download, such as: xwin-lm-70b-v0.1.Q4_K_M.gguf.

Then click Download.

### On the command line, including multiple files at once

I recommend using the `huggingface-hub` Python library:

```shell
pip3 install huggingface-hub
```

Then you can download any individual model file to the current directory, at high speed, with a command like this:

```shell
huggingface-cli download TheBloke/Xwin-LM-70B-V0.1-GGUF xwin-lm-70b-v0.1.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```

<details>
  <summary>More advanced huggingface-cli download usage</summary>

You can also download multiple files at once with a pattern:

```shell
huggingface-cli download TheBloke/Xwin-LM-70B-V0.1-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```

For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).

To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:

```shell
pip3 install hf_transfer
```

And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:

```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Xwin-LM-70B-V0.1-GGUF xwin-lm-70b-v0.1.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```

Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_GGUF.md-how-to-download end -->

<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command

Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.

```shell
./main -ngl 32 -m xwin-lm-70b-v0.1.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:"
```

Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.

If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`

For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)

## How to run in `text-generation-webui`

Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).

## How to run from Python code

You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.

### How to load this model in Python code, using ctransformers

#### First install the package

Run one of the following commands, according to your system:

```shell
# Base ctransformers with no GPU acceleration
pip install ctransformers
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]
# Or with AMD ROCm GPU acceleration (Linux only)
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems only
CT_METAL=1 pip install ctransformers --no-binary ctransformers
```

#### Simple ctransformers example code

```python
from ctransformers import AutoModelForCausalLM

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Xwin-LM-70B-V0.1-GGUF", model_file="xwin-lm-70b-v0.1.Q4_K_M.gguf", model_type="llama", gpu_layers=50)

print(llm("AI is going to"))
```

## How to use with LangChain

Here are guides on using llama-cpp-python and ctransformers with LangChain:

* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)

<!-- README_GGUF.md-how-to-run end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

<!-- original-model-card start -->
# Original model card: Xwin-LM's Xwin-LM 70B V0.1


<h3 align="center">
Xwin-LM: Powerful, Stable, and Reproducible LLM Alignment
</h3>

<p align="center">
  <a href="https://github.com/Xwin-LM/Xwin-LM">
    <img src="https://img.shields.io/badge/GitHub-yellow.svg?style=social&logo=github">
  </a>
  <a href="https://huggingface.co/Xwin-LM">
    <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue">
  </a>
</p>



**Step up your LLM alignment with Xwin-LM!**

Xwin-LM aims to develop and open-source alignment technologies for large language models, including supervised fine-tuning (SFT), reward models (RM), reject sampling, reinforcement learning from human feedback (RLHF), etc. Our first release, built-upon on the Llama2 base models, ranked **TOP-1** on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/). Notably, it's **the first to surpass GPT-4** on this benchmark. The project will be continuously updated.

## News

- 💥 [Sep, 2023] We released [Xwin-LM-70B-V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1), which has achieved a win-rate against Davinci-003 of **95.57%** on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmark, ranking as **TOP-1** on AlpacaEval. **It was the FIRST model surpassing GPT-4** on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/). Also note its winrate v.s. GPT-4 is **60.61**.
- 🔍 [Sep, 2023] RLHF plays crucial role in the strong performance of Xwin-LM-V0.1 release!
- 💥 [Sep, 2023] We released [Xwin-LM-13B-V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-13B-V0.1), which has achieved **91.76%** win-rate on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/), ranking as **top-1** among all 13B models.
- 💥 [Sep, 2023] We released [Xwin-LM-7B-V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-7B-V0.1), which has achieved **87.82%** win-rate on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/), ranking as **top-1** among all 7B models.


## Model Card
| Model        | Checkpoint | Report | License  |
|------------|------------|-------------|------------------|
|Xwin-LM-7B-V0.1| 🤗 <a href="https://huggingface.co/Xwin-LM/Xwin-LM-7B-V0.1" target="_blank">HF Link</a> | 📃**Coming soon (Stay tuned)** | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License|
|Xwin-LM-13B-V0.1| 🤗 <a href="https://huggingface.co/Xwin-LM/Xwin-LM-13B-V0.1" target="_blank">HF Link</a> |  |  <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License|
|Xwin-LM-70B-V0.1| 🤗 <a href="https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1" target="_blank">HF Link</a> |  |  <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License|
## Benchmarks

### Xwin-LM performance on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/).

The table below displays the performance of Xwin-LM on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/), where evaluates its win-rate against Text-Davinci-003 across 805 questions. To provide a comprehensive evaluation, we present, for the first time, the win-rate against ChatGPT and GPT-4 as well. Our Xwin-LM model family establish a new state-of-the-art performance across all metrics. Notably, Xwin-LM-70B-V0.1 has eclipsed GPT-4 for the first time, achieving an impressive win-rate of **95.57%** to Text-Davinci-003 and **60.61%** to GPT-4.

| **Model**                         | **AlpacaEval (winrate %)** | **AlpacaEval (winrate %)**  |**AlpacaEval (winrate %)** |
|----------------------------------|------------|----------|-------------|
|    | **v.s. Text-Davinci-003** | **v.s. ChatGPT** | **v.s. GPT4**|
| **Xwin-LM-70B-V0.1**                   | **95.57**      | **87.50**          | **60.61**            |
| GPT-4                          | 95.28  | 84.66     |  50.00      |
| WizardLM-70B-V1.0           | 92.91  | 80.19     |  46.70      |
| Llama-2-70B-Chat         | 92.66  | 81.97     |  51.19      |
| **Xwin-LM-13B-V0.1**          | **91.76**  | **81.79**  |  **55.30**    |
| ChatGPT                    | 89.37  | 50.00     |  16.60      |
| WizardLM-13B-V1.2         | 89.17  | 75.75     |  41.91      |
| **Xwin-LM-7B-V0.1**      | **87.35** | **76.40**    |  **47.57**     |
| Llama-2-13B-Chat     | 81.09  | 64.22     |  30.92      |

### Case study on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/)

|   Prompts  |  GTP4 response   |  Xwin-LM response |
|----------------|------------|--------|
|I've put a plate on top of an apple, and take the plate from kitchen to dinning room. Where is the apple now|The apple is now in the dining room, as it was underneath the plate when you moved the plate from the kitchen to the dining room.|The apple is still in the kitchen, as you have only moved the plate. The apple is under the plate, so if you want to bring the apple to the dining room, you should either move the apple directly or put the apple on the plate and then move the plate to the dining room.|
| Answer the following question.<br> How do you say "good evening" in French. | In French, "good evening" is said as "bonsoir." | In French, "good evening" is translated to "bonsoir." This greeting is used in the evening and nighttime hours, typically after 6 p.m. It is a combination of "bon," which means "good," and "soir," which means "evening." To pronounce it, say "bone-swahr." |


### Xwin-LM performance on NLP foundation tasks.

The following table provides a comparison of Xwin-LMs with other LLMs on NLP foundation tasks in [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).

| Model            | MMLU 5-shot | ARC 25-shot | TruthfulQA 0-shot | HellaSwag 10-shot | Average    |
|------------------|-------------|-------------|-------------------|-------------------|------------|
| Text-davinci-003 | 56.9 | **85.2**    | 59.3         | 82.2       | 70.9  |
|Vicuna-13b 1.1   | 51.3        | 53.0        | 51.8              | 80.1              | 59.1       |
|Guanaco 30B   | 57.6        | 63.7        | 50.7              | 85.1              | 64.3       |
| WizardLM-7B 1.0      | 42.7        | 51.6        | 44.7              | 77.7              | 54.2       |
| WizardLM-13B 1.0     | 52.3        | 57.2        | 50.5              | 81.0              | 60.2       |
| WizardLM-30B 1.0    | 58.8    | 62.5 | 52.4       | 83.3          | 64.2|
| Llama-2-7B-Chat      | 48.3        | 52.9        | 45.6     | 78.6    | 56.4       |
| Llama-2-13B-Chat      | 54.6        | 59.0        | 44.1     | 81.9    | 59.9       |
| Llama-2-70B-Chat      | 63.9        | 64.6        | 52.8       | 85.9   | 66.8       |
| **Xwin-LM-7B-V0.1**      | 49.7        | 56.2        | 48.1     | 79.5    | 58.4       |
| **Xwin-LM-13B-V0.1**      | 56.6        | 62.4        | 45.5     | 83.0    | 61.9       |
| **Xwin-LM-70B-V0.1**      | **69.6**        | 70.5        | **60.1**       | **87.1**   | **71.8**       |


## Inference

### Conversation templates
To obtain desired results, please strictly follow the conversation templates when utilizing our model for inference. Our model adopts the prompt format established by [Vicuna](https://github.com/lm-sys/FastChat) and is equipped to support **multi-turn** conversations.
```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hi! ASSISTANT: Hello.</s>USER: Who are you? ASSISTANT: I am Xwin-LM.</s>......
```

### HuggingFace Example

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("Xwin-LM/Xwin-LM-7B-V0.1")
tokenizer = AutoTokenizer.from_pretrained("Xwin-LM/Xwin-LM-7B-V0.1")
(
    prompt := "A chat between a curious user and an artificial intelligence assistant. "
            "The assistant gives helpful, detailed, and polite answers to the user's questions. "
            "USER: Hello, can you help me? "
            "ASSISTANT:"
)
inputs = tokenizer(prompt, return_tensors="pt")
samples = model.generate(**inputs, max_new_tokens=4096, temperature=0.7)
output = tokenizer.decode(samples[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
print(output)
# Of course! I'm here to help. Please feel free to ask your question or describe the issue you're having, and I'll do my best to assist you.
```


### vllm Example
Because Xwin-LM is based on Llama2, it also offers support for rapid inference using [vllm](https://github.com/vllm-project/vllm). Please refer to [vllm](https://github.com/vllm-project/vllm) for detailed installation instructions.
```python
from vllm import LLM, SamplingParams
(
    prompt := "A chat between a curious user and an artificial intelligence assistant. "
            "The assistant gives helpful, detailed, and polite answers to the user's questions. "
            "USER: Hello, can you help me? "
            "ASSISTANT:"
)
sampling_params = SamplingParams(temperature=0.7, max_tokens=4096)
llm = LLM(model="Xwin-LM/Xwin-LM-7B-V0.1")
outputs = llm.generate([prompt,], sampling_params)

for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(generated_text)
```

## TODO

- [ ] Release the source code
- [ ] Release more capabilities, such as math, reasoning, and etc.

## Citation
Please consider citing our work if you use the data or code in this repo.
```
@software{xwin-lm,
  title = {Xwin-LM},
  author = {Xwin-LM Team},
  url = {https://github.com/Xwin-LM/Xwin-LM},
  version = {pre-release},
  year = {2023},
  month = {9},
}
```

## Acknowledgements

Thanks to [Llama 2](https://ai.meta.com/llama/), [FastChat](https://github.com/lm-sys/FastChat), [AlpacaFarm](https://github.com/tatsu-lab/alpaca_farm), and [vllm](https://github.com/vllm-project/vllm).

<!-- original-model-card end -->