TheBloke commited on
Commit
5dd92df
·
1 Parent(s): bc31b1b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +483 -0
README.md ADDED
@@ -0,0 +1,483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepnight-research/Saily_220B
3
+ datasets:
4
+ - tiiuae/falcon-refinedweb
5
+ - EleutherAI/pile
6
+ - meta-math/MetaMathQA
7
+ inference: false
8
+ language:
9
+ - en
10
+ library_name: transformers
11
+ license: llama2
12
+ model_creator: DEEPNIGHT
13
+ model_name: Saily 220B
14
+ model_type: llama
15
+ prompt_template: 'Below is an instruction that describes a task. Write a response
16
+ that appropriately completes the request.
17
+
18
+
19
+ ### Instruction:
20
+
21
+ {prompt}
22
+
23
+
24
+ ### Response:
25
+
26
+ '
27
+ quantized_by: TheBloke
28
+ ---
29
+ <!-- markdownlint-disable MD041 -->
30
+
31
+ <!-- header start -->
32
+ <!-- 200823 -->
33
+ <div style="width: auto; margin-left: auto; margin-right: auto">
34
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
35
+ </div>
36
+ <div style="display: flex; justify-content: space-between; width: 100%;">
37
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
38
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
39
+ </div>
40
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
41
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
42
+ </div>
43
+ </div>
44
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
45
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
46
+ <!-- header end -->
47
+
48
+ # Saily 220B - AWQ
49
+ - Model creator: [DEEPNIGHT](https://huggingface.co/deepnight-research)
50
+ - Original model: [Saily 220B](https://huggingface.co/deepnight-research/Saily_220B)
51
+
52
+ <!-- description start -->
53
+ ## Description
54
+
55
+ This repo contains AWQ model files for [DEEPNIGHT's Saily 220B](https://huggingface.co/deepnight-research/Saily_220B).
56
+
57
+
58
+ ### About AWQ
59
+
60
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
61
+
62
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
63
+
64
+ It is supported by:
65
+
66
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
67
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
68
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
69
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
70
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
71
+
72
+ <!-- description end -->
73
+ <!-- repositories-available start -->
74
+ ## Repositories available
75
+
76
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Saily_220B-AWQ)
77
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Saily_220B-GPTQ)
78
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Saily_220B-GGUF)
79
+ * [DEEPNIGHT's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/deepnight-research/Saily_220B)
80
+ <!-- repositories-available end -->
81
+
82
+ <!-- prompt-template start -->
83
+ ## Prompt template: Alpaca
84
+
85
+ ```
86
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
87
+
88
+ ### Instruction:
89
+ {prompt}
90
+
91
+ ### Response:
92
+
93
+ ```
94
+
95
+ <!-- prompt-template end -->
96
+
97
+
98
+ <!-- README_AWQ.md-provided-files start -->
99
+ ## Provided files, and AWQ parameters
100
+
101
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
102
+
103
+ Models are released as sharded safetensors files.
104
+
105
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
106
+ | ------ | ---- | -- | ----------- | ------- | ---- |
107
+ | [main](https://huggingface.co/TheBloke/Saily_220B-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 109.08 GB
108
+
109
+ <!-- README_AWQ.md-provided-files end -->
110
+
111
+ <!-- README_AWQ.md-text-generation-webui start -->
112
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
113
+
114
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
115
+
116
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
117
+
118
+ 1. Click the **Model tab**.
119
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Saily_220B-AWQ`.
120
+ 3. Click **Download**.
121
+ 4. The model will start downloading. Once it's finished it will say "Done".
122
+ 5. In the top left, click the refresh icon next to **Model**.
123
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Saily_220B-AWQ`
124
+ 7. Select **Loader: AutoAWQ**.
125
+ 8. Click Load, and the model will load and is now ready for use.
126
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
127
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
128
+ <!-- README_AWQ.md-text-generation-webui end -->
129
+
130
+ <!-- README_AWQ.md-use-from-vllm start -->
131
+ ## Multi-user inference server: vLLM
132
+
133
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
134
+
135
+ - Please ensure you are using vLLM version 0.2 or later.
136
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
137
+
138
+ For example:
139
+
140
+ ```shell
141
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Saily_220B-AWQ --quantization awq --dtype auto
142
+ ```
143
+
144
+ - When using vLLM from Python code, again set `quantization=awq`.
145
+
146
+ For example:
147
+
148
+ ```python
149
+ from vllm import LLM, SamplingParams
150
+
151
+ prompts = [
152
+ "Tell me about AI",
153
+ "Write a story about llamas",
154
+ "What is 291 - 150?",
155
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
156
+ ]
157
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
158
+
159
+ ### Instruction:
160
+ {prompt}
161
+
162
+ ### Response:
163
+ '''
164
+
165
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
166
+
167
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
168
+
169
+ llm = LLM(model="TheBloke/Saily_220B-AWQ", quantization="awq", dtype="auto")
170
+
171
+ outputs = llm.generate(prompts, sampling_params)
172
+
173
+ # Print the outputs.
174
+ for output in outputs:
175
+ prompt = output.prompt
176
+ generated_text = output.outputs[0].text
177
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
178
+ ```
179
+ <!-- README_AWQ.md-use-from-vllm start -->
180
+
181
+ <!-- README_AWQ.md-use-from-tgi start -->
182
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
183
+
184
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
185
+
186
+ Example Docker parameters:
187
+
188
+ ```shell
189
+ --model-id TheBloke/Saily_220B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
190
+ ```
191
+
192
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
193
+
194
+ ```shell
195
+ pip3 install huggingface-hub
196
+ ```
197
+
198
+ ```python
199
+ from huggingface_hub import InferenceClient
200
+
201
+ endpoint_url = "https://your-endpoint-url-here"
202
+
203
+ prompt = "Tell me about AI"
204
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
205
+
206
+ ### Instruction:
207
+ {prompt}
208
+
209
+ ### Response:
210
+ '''
211
+
212
+ client = InferenceClient(endpoint_url)
213
+ response = client.text_generation(prompt,
214
+ max_new_tokens=128,
215
+ do_sample=True,
216
+ temperature=0.7,
217
+ top_p=0.95,
218
+ top_k=40,
219
+ repetition_penalty=1.1)
220
+
221
+ print(f"Model output: ", response)
222
+ ```
223
+ <!-- README_AWQ.md-use-from-tgi end -->
224
+
225
+ <!-- README_AWQ.md-use-from-python start -->
226
+ ## Inference from Python code using Transformers
227
+
228
+ ### Install the necessary packages
229
+
230
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
231
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
232
+
233
+ ```shell
234
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
235
+ ```
236
+
237
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
238
+
239
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
240
+
241
+ ```shell
242
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
243
+ ```
244
+
245
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
246
+
247
+ ```shell
248
+ pip3 uninstall -y autoawq
249
+ git clone https://github.com/casper-hansen/AutoAWQ
250
+ cd AutoAWQ
251
+ pip3 install .
252
+ ```
253
+
254
+ ### Transformers example code (requires Transformers 4.35.0 and later)
255
+
256
+ ```python
257
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
258
+
259
+ model_name_or_path = "TheBloke/Saily_220B-AWQ"
260
+
261
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
262
+ model = AutoModelForCausalLM.from_pretrained(
263
+ model_name_or_path,
264
+ low_cpu_mem_usage=True,
265
+ device_map="cuda:0"
266
+ )
267
+
268
+ # Using the text streamer to stream output one token at a time
269
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
270
+
271
+ prompt = "Tell me about AI"
272
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
273
+
274
+ ### Instruction:
275
+ {prompt}
276
+
277
+ ### Response:
278
+ '''
279
+
280
+ # Convert prompt to tokens
281
+ tokens = tokenizer(
282
+ prompt_template,
283
+ return_tensors='pt'
284
+ ).input_ids.cuda()
285
+
286
+ generation_params = {
287
+ "do_sample": True,
288
+ "temperature": 0.7,
289
+ "top_p": 0.95,
290
+ "top_k": 40,
291
+ "max_new_tokens": 512,
292
+ "repetition_penalty": 1.1
293
+ }
294
+
295
+ # Generate streamed output, visible one token at a time
296
+ generation_output = model.generate(
297
+ tokens,
298
+ streamer=streamer,
299
+ **generation_params
300
+ )
301
+
302
+ # Generation without a streamer, which will include the prompt in the output
303
+ generation_output = model.generate(
304
+ tokens,
305
+ **generation_params
306
+ )
307
+
308
+ # Get the tokens from the output, decode them, print them
309
+ token_output = generation_output[0]
310
+ text_output = tokenizer.decode(token_output)
311
+ print("model.generate output: ", text_output)
312
+
313
+ # Inference is also possible via Transformers' pipeline
314
+ from transformers import pipeline
315
+
316
+ pipe = pipeline(
317
+ "text-generation",
318
+ model=model,
319
+ tokenizer=tokenizer,
320
+ **generation_params
321
+ )
322
+
323
+ pipe_output = pipe(prompt_template)[0]['generated_text']
324
+ print("pipeline output: ", pipe_output)
325
+
326
+ ```
327
+ <!-- README_AWQ.md-use-from-python end -->
328
+
329
+ <!-- README_AWQ.md-compatibility start -->
330
+ ## Compatibility
331
+
332
+ The files provided are tested to work with:
333
+
334
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
335
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
336
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
337
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
338
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
339
+
340
+ <!-- README_AWQ.md-compatibility end -->
341
+
342
+ <!-- footer start -->
343
+ <!-- 200823 -->
344
+ ## Discord
345
+
346
+ For further support, and discussions on these models and AI in general, join us at:
347
+
348
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
349
+
350
+ ## Thanks, and how to contribute
351
+
352
+ Thanks to the [chirper.ai](https://chirper.ai) team!
353
+
354
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
355
+
356
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
357
+
358
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
359
+
360
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
361
+
362
+ * Patreon: https://patreon.com/TheBlokeAI
363
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
364
+
365
+ **Special thanks to**: Aemon Algiz.
366
+
367
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
368
+
369
+
370
+ Thank you to all my generous patrons and donaters!
371
+
372
+ And thank you again to a16z for their generous grant.
373
+
374
+ <!-- footer end -->
375
+
376
+ # Original model card: DEEPNIGHT's Saily 220B
377
+
378
+ # Saily 220B
379
+ <img src="https://i.ibb.co/rG8S6cF/Saily-220-B.png" style="width: 100%; height: auto;"/>
380
+
381
+ ---
382
+ ## Announcements
383
+ **1.** <b>Date: </b>17th December, 2023
384
+ Releasing v1. Saily_220B is a powerful AI model built on top of Llama2-70B merges.
385
+ We created 10 fine-tuned **Llama2 70B** models. The models were were fine-tuned on a part of Refined-Web Dataset (common for all)
386
+ and individually the models were finetuned on niche specific datasets:
387
+ - Code
388
+ - Humor
389
+ - Maths
390
+ - Logical Understanding
391
+ - Physics
392
+ - Reasoning
393
+ - Psychology
394
+ - Roleplay
395
+
396
+ We created 4 linear merges while keeping **Logical-Understanding** and **Reasoning** models constant in all linear merges.
397
+ and then finally we created a passthrough merge between the models.
398
+
399
+ Public Datasets used:
400
+ 1. [RefinedWeb](https://hf.co/datasets/tiiuae/falcon-refinedweb) (part of it)
401
+ 2. Pile (part of it)
402
+ 3. [MetaMathQA](https://hf.co/datasets/meta-math/MetaMathQA)
403
+ 4. Unnatural Code (Javascript, Python, C++)
404
+
405
+ ### How did we create the private dataset?
406
+ We recorded many internal brain-storming sessions where we just talked about random things.
407
+ We also invited many experts from different fields:
408
+ - Mathematicians
409
+ - Developers
410
+ - Bio-Engineers
411
+ - Authors
412
+ - Psychologists
413
+ - and others...
414
+
415
+ We talked about different things with them and recorded the sessions and then transcribed the audio to create the datasets.
416
+
417
+ ---
418
+
419
+ ### Please don't refer to the config.json in the files, it isn't accurate. You can run:
420
+ ```python
421
+ from transformers import AutoModelForCausalLM as amclm
422
+ model = amclm.from_pretrained("deepnight-research/saily_220b",
423
+ device_map="auto")
424
+
425
+ # print(model.config)
426
+ model.config
427
+ ```
428
+ to check out the model's configuration.
429
+
430
+ ---
431
+
432
+
433
+ ### Try it:
434
+
435
+ You definitely need GPUs here (that goes without saying)
436
+ * We have tried it on **4 x A100 80GB** and **2 x A100 80GB**.
437
+ * You will have to load the model in **4bit** to fit on **2 x A100 (80GB)**.
438
+
439
+ ```python
440
+ from transformers import AutoModelForCausalLM as amclm
441
+ from transformers import AutoTokenizer
442
+
443
+ model_name = "deepnight-research/saily_220b"
444
+ model = amclm.from_pretrained(model_name, device_map="auto")
445
+
446
+ # To load in 8Bit, make sure you have bitsandbytes installed.
447
+ # model = amclm.from_pretrained(model_name,
448
+ # device_map="auto",
449
+ # load_in_8bit=True
450
+ # )
451
+
452
+ # Float16
453
+ # import torch
454
+ # model = amclm.from_pretrained(model_name,
455
+ # device_map="auto",
456
+ # torch_dtype=torch.float16
457
+ # )
458
+
459
+ tokenizer = AutoTokenier.from_pretrained(model_name)
460
+
461
+ input_ids = tokenizer.encode("[INST]\nWrite a poem about cats\n[/INST]\n\n", return_tensors="pt")
462
+
463
+ output = model.generate(input_ids, max_length=128,
464
+ temperature=0.7,
465
+ repetition_penalty=1.1,
466
+ top_p=0.7, top_k=50
467
+ )
468
+
469
+ output_text = tokenizer.decode(output[0], skip_special_tokens=True)
470
+ ```
471
+
472
+ We recommend following **Alpaca Prompt Format**, and if you're trying it out in Text-Generation-WebUI, please use **INSTRUCT** or **CHAT-INSTRUCT** mode.
473
+
474
+
475
+ ---
476
+
477
+ ## Limitations and Bias
478
+ As with all language models, Saily_220B may generate incorrect or biased content. It's important to keep this in mind when using the model.
479
+
480
+ ---
481
+
482
+ ## Wanna Talk?
483
+ Reach out to us at [[email protected]](mailto:[email protected]) or [[email protected]](mailto:[email protected])