TheBloke commited on
Commit
4b89405
·
1 Parent(s): e151f85

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +410 -0
README.md ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: SuperAGI/SAM
3
+ inference: false
4
+ language:
5
+ - en
6
+ license: apache-2.0
7
+ model_creator: SuperAGI
8
+ model_name: SAM
9
+ model_type: mistral
10
+ prompt_template: '[INST] {prompt} [/INST]
11
+
12
+ '
13
+ quantized_by: TheBloke
14
+ ---
15
+ <!-- markdownlint-disable MD041 -->
16
+
17
+ <!-- header start -->
18
+ <!-- 200823 -->
19
+ <div style="width: auto; margin-left: auto; margin-right: auto">
20
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
21
+ </div>
22
+ <div style="display: flex; justify-content: space-between; width: 100%;">
23
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
24
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
25
+ </div>
26
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
27
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
28
+ </div>
29
+ </div>
30
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
31
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
32
+ <!-- header end -->
33
+
34
+ # SAM - AWQ
35
+ - Model creator: [SuperAGI](https://huggingface.co/SuperAGI)
36
+ - Original model: [SAM](https://huggingface.co/SuperAGI/SAM)
37
+
38
+ <!-- description start -->
39
+ ## Description
40
+
41
+ This repo contains AWQ model files for [SuperAGI's SAM](https://huggingface.co/SuperAGI/SAM).
42
+
43
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
44
+
45
+
46
+ ### About AWQ
47
+
48
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
49
+
50
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
51
+
52
+ It is supported by:
53
+
54
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
55
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
56
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
57
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
58
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
59
+
60
+ <!-- description end -->
61
+ <!-- repositories-available start -->
62
+ ## Repositories available
63
+
64
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/SAM-AWQ)
65
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/SAM-GPTQ)
66
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/SAM-GGUF)
67
+ * [SuperAGI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/SuperAGI/SAM)
68
+ <!-- repositories-available end -->
69
+
70
+ <!-- prompt-template start -->
71
+ ## Prompt template: Mistral
72
+
73
+ ```
74
+ [INST] {prompt} [/INST]
75
+
76
+ ```
77
+
78
+ <!-- prompt-template end -->
79
+
80
+
81
+ <!-- README_AWQ.md-provided-files start -->
82
+ ## Provided files, and AWQ parameters
83
+
84
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
85
+
86
+ Models are released as sharded safetensors files.
87
+
88
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
89
+ | ------ | ---- | -- | ----------- | ------- | ---- |
90
+ | [main](https://huggingface.co/TheBloke/SAM-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB
91
+
92
+ <!-- README_AWQ.md-provided-files end -->
93
+
94
+ <!-- README_AWQ.md-text-generation-webui start -->
95
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
96
+
97
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
98
+
99
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
100
+
101
+ 1. Click the **Model tab**.
102
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/SAM-AWQ`.
103
+ 3. Click **Download**.
104
+ 4. The model will start downloading. Once it's finished it will say "Done".
105
+ 5. In the top left, click the refresh icon next to **Model**.
106
+ 6. In the **Model** dropdown, choose the model you just downloaded: `SAM-AWQ`
107
+ 7. Select **Loader: AutoAWQ**.
108
+ 8. Click Load, and the model will load and is now ready for use.
109
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
110
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
111
+ <!-- README_AWQ.md-text-generation-webui end -->
112
+
113
+ <!-- README_AWQ.md-use-from-vllm start -->
114
+ ## Multi-user inference server: vLLM
115
+
116
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
117
+
118
+ - Please ensure you are using vLLM version 0.2 or later.
119
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
120
+
121
+ For example:
122
+
123
+ ```shell
124
+ python3 -m vllm.entrypoints.api_server --model TheBloke/SAM-AWQ --quantization awq --dtype auto
125
+ ```
126
+
127
+ - When using vLLM from Python code, again set `quantization=awq`.
128
+
129
+ For example:
130
+
131
+ ```python
132
+ from vllm import LLM, SamplingParams
133
+
134
+ prompts = [
135
+ "Tell me about AI",
136
+ "Write a story about llamas",
137
+ "What is 291 - 150?",
138
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
139
+ ]
140
+ prompt_template=f'''[INST] {prompt} [/INST]
141
+ '''
142
+
143
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
144
+
145
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
146
+
147
+ llm = LLM(model="TheBloke/SAM-AWQ", quantization="awq", dtype="auto")
148
+
149
+ outputs = llm.generate(prompts, sampling_params)
150
+
151
+ # Print the outputs.
152
+ for output in outputs:
153
+ prompt = output.prompt
154
+ generated_text = output.outputs[0].text
155
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
156
+ ```
157
+ <!-- README_AWQ.md-use-from-vllm start -->
158
+
159
+ <!-- README_AWQ.md-use-from-tgi start -->
160
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
161
+
162
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
163
+
164
+ Example Docker parameters:
165
+
166
+ ```shell
167
+ --model-id TheBloke/SAM-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
168
+ ```
169
+
170
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
171
+
172
+ ```shell
173
+ pip3 install huggingface-hub
174
+ ```
175
+
176
+ ```python
177
+ from huggingface_hub import InferenceClient
178
+
179
+ endpoint_url = "https://your-endpoint-url-here"
180
+
181
+ prompt = "Tell me about AI"
182
+ prompt_template=f'''[INST] {prompt} [/INST]
183
+ '''
184
+
185
+ client = InferenceClient(endpoint_url)
186
+ response = client.text_generation(prompt,
187
+ max_new_tokens=128,
188
+ do_sample=True,
189
+ temperature=0.7,
190
+ top_p=0.95,
191
+ top_k=40,
192
+ repetition_penalty=1.1)
193
+
194
+ print(f"Model output: ", response)
195
+ ```
196
+ <!-- README_AWQ.md-use-from-tgi end -->
197
+
198
+ <!-- README_AWQ.md-use-from-python start -->
199
+ ## Inference from Python code using Transformers
200
+
201
+ ### Install the necessary packages
202
+
203
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
204
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
205
+
206
+ ```shell
207
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
208
+ ```
209
+
210
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
211
+
212
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
213
+
214
+ ```shell
215
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
216
+ ```
217
+
218
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
219
+
220
+ ```shell
221
+ pip3 uninstall -y autoawq
222
+ git clone https://github.com/casper-hansen/AutoAWQ
223
+ cd AutoAWQ
224
+ pip3 install .
225
+ ```
226
+
227
+ ### Transformers example code (requires Transformers 4.35.0 and later)
228
+
229
+ ```python
230
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
231
+
232
+ model_name_or_path = "TheBloke/SAM-AWQ"
233
+
234
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
235
+ model = AutoModelForCausalLM.from_pretrained(
236
+ model_name_or_path,
237
+ low_cpu_mem_usage=True,
238
+ device_map="cuda:0"
239
+ )
240
+
241
+ # Using the text streamer to stream output one token at a time
242
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
243
+
244
+ prompt = "Tell me about AI"
245
+ prompt_template=f'''[INST] {prompt} [/INST]
246
+ '''
247
+
248
+ # Convert prompt to tokens
249
+ tokens = tokenizer(
250
+ prompt_template,
251
+ return_tensors='pt'
252
+ ).input_ids.cuda()
253
+
254
+ generation_params = {
255
+ "do_sample": True,
256
+ "temperature": 0.7,
257
+ "top_p": 0.95,
258
+ "top_k": 40,
259
+ "max_new_tokens": 512,
260
+ "repetition_penalty": 1.1
261
+ }
262
+
263
+ # Generate streamed output, visible one token at a time
264
+ generation_output = model.generate(
265
+ tokens,
266
+ streamer=streamer,
267
+ **generation_params
268
+ )
269
+
270
+ # Generation without a streamer, which will include the prompt in the output
271
+ generation_output = model.generate(
272
+ tokens,
273
+ **generation_params
274
+ )
275
+
276
+ # Get the tokens from the output, decode them, print them
277
+ token_output = generation_output[0]
278
+ text_output = tokenizer.decode(token_output)
279
+ print("model.generate output: ", text_output)
280
+
281
+ # Inference is also possible via Transformers' pipeline
282
+ from transformers import pipeline
283
+
284
+ pipe = pipeline(
285
+ "text-generation",
286
+ model=model,
287
+ tokenizer=tokenizer,
288
+ **generation_params
289
+ )
290
+
291
+ pipe_output = pipe(prompt_template)[0]['generated_text']
292
+ print("pipeline output: ", pipe_output)
293
+
294
+ ```
295
+ <!-- README_AWQ.md-use-from-python end -->
296
+
297
+ <!-- README_AWQ.md-compatibility start -->
298
+ ## Compatibility
299
+
300
+ The files provided are tested to work with:
301
+
302
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
303
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
304
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
305
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
306
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
307
+
308
+ <!-- README_AWQ.md-compatibility end -->
309
+
310
+ <!-- footer start -->
311
+ <!-- 200823 -->
312
+ ## Discord
313
+
314
+ For further support, and discussions on these models and AI in general, join us at:
315
+
316
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
317
+
318
+ ## Thanks, and how to contribute
319
+
320
+ Thanks to the [chirper.ai](https://chirper.ai) team!
321
+
322
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
323
+
324
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
325
+
326
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
327
+
328
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
329
+
330
+ * Patreon: https://patreon.com/TheBlokeAI
331
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
332
+
333
+ **Special thanks to**: Aemon Algiz.
334
+
335
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
336
+
337
+
338
+ Thank you to all my generous patrons and donaters!
339
+
340
+ And thank you again to a16z for their generous grant.
341
+
342
+ <!-- footer end -->
343
+
344
+ # Original model card: SuperAGI's SAM
345
+
346
+ # Model Card
347
+ SAM (Small Agentic Model), a 7B model that demonstrates impressive reasoning abilities despite its smaller size. SAM-7B has outperformed existing SoTA models on various reasoning benchmarks, including GSM8k and ARC-C.
348
+
349
+ For full details of this model please read our [release blog post](https://superagi.com/introducing-sam-small-agentic-model/).
350
+
351
+ # Key Contributions
352
+ - SAM-7B outperforms GPT 3.5, Orca, and several other 70B models on multiple reasoning benchmarks, including ARC-C and GSM8k.
353
+ - Interestingly, despite being trained on a 97% smaller dataset, SAM-7B surpasses Orca-13B on GSM8k.
354
+ - All responses in our fine-tuning dataset are generated by open-source models without any assistance from state-of-the-art models like GPT-3.5 or GPT-4.
355
+
356
+ ## Training
357
+ - Trained by: SuperAGI Team
358
+ - Hardware: NVIDIA 6 x H100 SxM (80GB)
359
+ - Model used: Mistral 7B
360
+ - Duration of finetuning: 4 hours
361
+ - Number of epochs: 1
362
+ - Batch size: 16
363
+ - Learning Rate: 2e-5
364
+ - Warmup Ratio: 0.1
365
+ - Optmizer: AdamW
366
+ - Scheduler: Cosine
367
+
368
+ ## Example Prompt
369
+
370
+ The template used to build a prompt for the Instruct model is defined as follows:
371
+ ```
372
+ <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST]
373
+ ```
374
+ Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings.
375
+
376
+
377
+ ## Evaluation
378
+
379
+ These benchmarks show that our model has improved reasoning as compared to orca 2-7b, orca 2-13b and GPT-3.5.
380
+ Despite being smaller in size, we show better multi-hop reasoning, as shown below:
381
+ <img src = "https://superagi.com/wp-content/uploads/2023/12/image-932.png" alt="Reasoning Benchmark Performance" width="700">
382
+
383
+ Note: Temperature=0.3 is the suggested for optimal performance
384
+
385
+ ## Run the model
386
+
387
+ ```python
388
+ from transformers import AutoModelForCausalLM, AutoTokenizer
389
+
390
+ model_id = "SuperAGI/SAM"
391
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
392
+
393
+ model = AutoModelForCausalLM.from_pretrained(model_id)
394
+
395
+ text = "Can elephants fly?"
396
+ inputs = tokenizer(text, return_tensors="pt")
397
+
398
+ outputs = model.generate(**inputs, max_new_tokens=200)
399
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
400
+ ```
401
+
402
+
403
+ ## Limitations
404
+
405
+ SAM is a demonstration that better reasoning can be induced using less but high-quality data generated using OpenSource LLMs.
406
+ The model is not suitable for conversations and simple Q&A, it performs better in task breakdown and reasoning only.
407
+ It does not have any moderation mechanisms. Therefore, the model is not suitable for production usage as it doesn't have guardrails for toxicity, societal bias, and language limitations. We would love to collaborate with the community to build safer and better models.
408
+
409
+ ## The SuperAGI AI Team
410
+ Anmol Gautam, Arkajit Datta, Rajat Chawla, Ayush Vatsal, Sukrit Chatterjee, Adarsh Jha, Abhijeet Sinha, Rakesh Krishna, Adarsh Deep, Ishaan Bhola, Mukunda NS, Nishant Gaurav.