TheBloke commited on
Commit
973910b
·
1 Parent(s): 14a2b99

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -54
README.md CHANGED
@@ -7,7 +7,7 @@ datasets:
7
  inference: false
8
  language:
9
  - en
10
- license: other
11
  model_creator: OpenAssistant
12
  model_link: https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319
13
  model_name: Llama2 13B Orca 8K 3319
@@ -47,110 +47,146 @@ widget:
47
  - Model creator: [OpenAssistant](https://huggingface.co/OpenAssistant)
48
  - Original model: [Llama2 13B Orca 8K 3319](https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319)
49
 
 
50
  ## Description
51
 
52
  This repo contains GPTQ model files for [OpenAssistant's Llama2 13B Orca 8K 3319](https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319).
53
 
54
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
55
 
 
 
56
  ## Repositories available
57
 
58
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ)
59
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GGML)
 
60
  * [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319)
 
61
 
 
62
  ## Prompt template: OpenAssistant-System
63
 
64
  ```
65
  <|system|>{system_message}</s><|prompter|>{prompt}</s><|assistant|>
 
66
  ```
67
 
68
- ## Provided files
 
 
 
69
 
70
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
71
 
72
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
73
 
74
- | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
75
- | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
76
- | [main](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/main) | 4 | 128 | False | 7.26 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
77
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | True | 8.00 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
78
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | True | 7.51 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
79
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | True | 7.26 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
80
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | True | 13.36 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
81
- | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | False | 13.65 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
82
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | True | 13.65 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
83
- | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | True | 13.95 GB | False | AutoGPTQ | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
 
 
 
85
  ## How to download from branches
86
 
87
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ:gptq-4bit-32g-actorder_True`
88
  - With Git, you can clone a branch with:
89
  ```
90
- git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ`
91
  ```
92
  - In Python Transformers code, the branch is the `revision` parameter; see below.
93
-
 
94
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
95
 
96
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
97
 
98
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
99
 
100
  1. Click the **Model tab**.
101
  2. Under **Download custom model or LoRA**, enter `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ`.
102
  - To download from a specific branch, enter for example `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ:gptq-4bit-32g-actorder_True`
103
  - see Provided Files above for the list of branches for each option.
104
  3. Click **Download**.
105
- 4. The model will start downloading. Once it's finished it will say "Done"
106
  5. In the top left, click the refresh icon next to **Model**.
107
  6. In the **Model** dropdown, choose the model you just downloaded: `OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ`
108
  7. The model will automatically load, and is now ready for use!
109
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
110
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
111
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
112
 
 
113
  ## How to use this GPTQ model from Python code
114
 
115
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
- `GITHUB_ACTIONS=true pip install auto-gptq`
 
 
 
 
118
 
119
- Then try the following example code:
120
 
121
  ```python
122
- from transformers import AutoTokenizer, pipeline, logging
123
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
124
 
125
  model_name_or_path = "TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ"
126
- model_basename = "model"
127
-
128
- use_triton = False
 
 
 
129
 
130
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
131
 
132
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
133
- model_basename=model_basename,
134
- use_safetensors=True,
135
- trust_remote_code=False,
136
- device="cuda:0",
137
- use_triton=use_triton,
138
- quantize_config=None)
139
-
140
- """
141
- To download from a specific branch, use the revision parameter, as in this example:
142
-
143
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
144
- revision="gptq-4bit-32g-actorder_True",
145
- model_basename=model_basename,
146
- use_safetensors=True,
147
- trust_remote_code=False,
148
- device="cuda:0",
149
- quantize_config=None)
150
- """
151
-
152
  prompt = "Tell me about AI"
153
  prompt_template=f'''<|system|>{system_message}</s><|prompter|>{prompt}</s><|assistant|>
 
154
  '''
155
 
156
  print("\n\n*** Generate:")
@@ -161,9 +197,6 @@ print(tokenizer.decode(output[0]))
161
 
162
  # Inference can also be done using transformers' pipeline
163
 
164
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
165
- logging.set_verbosity(logging.CRITICAL)
166
-
167
  print("*** Pipeline:")
168
  pipe = pipeline(
169
  "text-generation",
@@ -177,12 +210,17 @@ pipe = pipeline(
177
 
178
  print(pipe(prompt_template)[0]['generated_text'])
179
  ```
 
180
 
 
181
  ## Compatibility
182
 
183
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
184
 
185
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
186
 
187
  <!-- footer start -->
188
  <!-- 200823 -->
@@ -207,7 +245,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
207
 
208
  **Special thanks to**: Aemon Algiz.
209
 
210
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
211
 
212
 
213
  Thank you to all my generous patrons and donaters!
@@ -312,8 +350,8 @@ Dataset Composition:
312
  fanfics: 1000
313
  red_pajama: 1000
314
  ```
315
-
316
- The dataset [shahules786/orca-chat](https://huggingface.co/datasets/shahules786/orca-chat) combines similar examples of the GPT-4 subset of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) to form longer conversations
317
  to improve long-context training.
318
 
319
  Additionally, RedPajama and FanFics were used for classic language modelling as an auxiliary task to improve the RoPE scaling for the 8k context size.
 
7
  inference: false
8
  language:
9
  - en
10
+ license: llama2
11
  model_creator: OpenAssistant
12
  model_link: https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319
13
  model_name: Llama2 13B Orca 8K 3319
 
47
  - Model creator: [OpenAssistant](https://huggingface.co/OpenAssistant)
48
  - Original model: [Llama2 13B Orca 8K 3319](https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319)
49
 
50
+ <!-- description start -->
51
  ## Description
52
 
53
  This repo contains GPTQ model files for [OpenAssistant's Llama2 13B Orca 8K 3319](https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319).
54
 
55
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
56
 
57
+ <!-- description end -->
58
+ <!-- repositories-available start -->
59
  ## Repositories available
60
 
61
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ)
62
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GGUF)
63
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GGML)
64
  * [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319)
65
+ <!-- repositories-available end -->
66
 
67
+ <!-- prompt-template start -->
68
  ## Prompt template: OpenAssistant-System
69
 
70
  ```
71
  <|system|>{system_message}</s><|prompter|>{prompt}</s><|assistant|>
72
+
73
  ```
74
 
75
+ <!-- prompt-template end -->
76
+
77
+ <!-- README_GPTQ.md-provided-files start -->
78
+ ## Provided files and GPTQ parameters
79
 
80
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
81
 
82
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
83
 
84
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
85
+
86
+ <details>
87
+ <summary>Explanation of GPTQ parameters</summary>
88
+
89
+ - Bits: The bit size of the quantised model.
90
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
91
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
92
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
93
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
94
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
95
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
96
+
97
+ </details>
98
+
99
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
100
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
101
+ | [main](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
102
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
103
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
104
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
105
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
106
+ | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
107
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
108
+ | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
109
 
110
+ <!-- README_GPTQ.md-provided-files end -->
111
+
112
+ <!-- README_GPTQ.md-download-from-branches start -->
113
  ## How to download from branches
114
 
115
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ:gptq-4bit-32g-actorder_True`
116
  - With Git, you can clone a branch with:
117
  ```
118
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ
119
  ```
120
  - In Python Transformers code, the branch is the `revision` parameter; see below.
121
+ <!-- README_GPTQ.md-download-from-branches end -->
122
+ <!-- README_GPTQ.md-text-generation-webui start -->
123
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
124
 
125
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
126
 
127
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
128
 
129
  1. Click the **Model tab**.
130
  2. Under **Download custom model or LoRA**, enter `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ`.
131
  - To download from a specific branch, enter for example `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ:gptq-4bit-32g-actorder_True`
132
  - see Provided Files above for the list of branches for each option.
133
  3. Click **Download**.
134
+ 4. The model will start downloading. Once it's finished it will say "Done".
135
  5. In the top left, click the refresh icon next to **Model**.
136
  6. In the **Model** dropdown, choose the model you just downloaded: `OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ`
137
  7. The model will automatically load, and is now ready for use!
138
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
139
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
140
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
141
+ <!-- README_GPTQ.md-text-generation-webui end -->
142
 
143
+ <!-- README_GPTQ.md-use-from-python start -->
144
  ## How to use this GPTQ model from Python code
145
 
146
+ ### Install the necessary packages
147
+
148
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
149
+
150
+ ```shell
151
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
152
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
153
+ ```
154
+
155
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
156
+
157
+ ```shell
158
+ pip3 uninstall -y auto-gptq
159
+ git clone https://github.com/PanQiWei/AutoGPTQ
160
+ cd AutoGPTQ
161
+ pip3 install .
162
+ ```
163
+
164
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
165
 
166
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
167
+ ```shell
168
+ pip3 uninstall -y transformers
169
+ pip3 install git+https://github.com/huggingface/transformers.git
170
+ ```
171
 
172
+ ### You can then use the following code
173
 
174
  ```python
175
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
176
 
177
  model_name_or_path = "TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ"
178
+ # To use a different branch, change revision
179
+ # For example: revision="gptq-4bit-32g-actorder_True"
180
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
181
+ torch_dtype=torch.float16,
182
+ device_map="auto",
183
+ revision="main")
184
 
185
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187
  prompt = "Tell me about AI"
188
  prompt_template=f'''<|system|>{system_message}</s><|prompter|>{prompt}</s><|assistant|>
189
+
190
  '''
191
 
192
  print("\n\n*** Generate:")
 
197
 
198
  # Inference can also be done using transformers' pipeline
199
 
 
 
 
200
  print("*** Pipeline:")
201
  pipe = pipeline(
202
  "text-generation",
 
210
 
211
  print(pipe(prompt_template)[0]['generated_text'])
212
  ```
213
+ <!-- README_GPTQ.md-use-from-python end -->
214
 
215
+ <!-- README_GPTQ.md-compatibility start -->
216
  ## Compatibility
217
 
218
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
219
 
220
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
221
+
222
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
223
+ <!-- README_GPTQ.md-compatibility end -->
224
 
225
  <!-- footer start -->
226
  <!-- 200823 -->
 
245
 
246
  **Special thanks to**: Aemon Algiz.
247
 
248
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
249
 
250
 
251
  Thank you to all my generous patrons and donaters!
 
350
  fanfics: 1000
351
  red_pajama: 1000
352
  ```
353
+
354
+ The dataset [shahules786/orca-chat](https://huggingface.co/datasets/shahules786/orca-chat) combines similar examples of the GPT-4 subset of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) to form longer conversations
355
  to improve long-context training.
356
 
357
  Additionally, RedPajama and FanFics were used for classic language modelling as an auxiliary task to improve the RoPE scaling for the 8k context size.