TheBloke commited on
Commit
4075abe
·
1 Parent(s): 6cc5339

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -18
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  datasets:
3
  - ehartford/dolphin
4
  - shahules786/orca-chat
@@ -7,12 +8,14 @@ datasets:
7
  inference: false
8
  language:
9
  - en
10
- license: llama2
11
  model_creator: OpenAssistant
12
- model_link: https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319
13
  model_name: Llama2 13B Orca 8K 3319
14
  model_type: llama
15
  pipeline_tag: text-generation
 
 
 
16
  quantized_by: TheBloke
17
  tags:
18
  - sft
@@ -58,9 +61,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
58
  <!-- repositories-available start -->
59
  ## Repositories available
60
 
 
61
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ)
62
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GGUF)
63
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GGML)
64
  * [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319)
65
  <!-- repositories-available end -->
66
 
@@ -73,7 +76,15 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
73
  ```
74
 
75
  <!-- prompt-template end -->
 
 
 
 
76
 
 
 
 
 
77
  <!-- README_GPTQ.md-provided-files start -->
78
  ## Provided files and GPTQ parameters
79
 
@@ -98,13 +109,13 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
98
 
99
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
100
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
101
- | [main](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
102
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
103
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
104
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
105
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
106
  | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
107
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
108
  | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
109
 
110
  <!-- README_GPTQ.md-provided-files end -->
@@ -112,10 +123,10 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
112
  <!-- README_GPTQ.md-download-from-branches start -->
113
  ## How to download from branches
114
 
115
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ:gptq-4bit-32g-actorder_True`
116
  - With Git, you can clone a branch with:
117
  ```
118
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ
119
  ```
120
  - In Python Transformers code, the branch is the `revision` parameter; see below.
121
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -128,7 +139,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
128
 
129
  1. Click the **Model tab**.
130
  2. Under **Download custom model or LoRA**, enter `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ`.
131
- - To download from a specific branch, enter for example `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ:gptq-4bit-32g-actorder_True`
132
  - see Provided Files above for the list of branches for each option.
133
  3. Click **Download**.
134
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -176,10 +187,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
176
 
177
  model_name_or_path = "TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ"
178
  # To use a different branch, change revision
179
- # For example: revision="gptq-4bit-32g-actorder_True"
180
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
181
- torch_dtype=torch.float16,
182
  device_map="auto",
 
183
  revision="main")
184
 
185
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -192,7 +203,7 @@ prompt_template=f'''<|system|>{system_message}</s><|prompter|>{prompt}</s><|assi
192
  print("\n\n*** Generate:")
193
 
194
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
195
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
196
  print(tokenizer.decode(output[0]))
197
 
198
  # Inference can also be done using transformers' pipeline
@@ -203,9 +214,11 @@ pipe = pipeline(
203
  model=model,
204
  tokenizer=tokenizer,
205
  max_new_tokens=512,
 
206
  temperature=0.7,
207
  top_p=0.95,
208
- repetition_penalty=1.15
 
209
  )
210
 
211
  print(pipe(prompt_template)[0]['generated_text'])
@@ -230,10 +243,12 @@ For further support, and discussions on these models and AI in general, join us
230
 
231
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
232
 
233
- ## Thanks, and how to contribute.
234
 
235
  Thanks to the [chirper.ai](https://chirper.ai) team!
236
 
 
 
237
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
238
 
239
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -245,7 +260,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
245
 
246
  **Special thanks to**: Aemon Algiz.
247
 
248
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
249
 
250
 
251
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319
3
  datasets:
4
  - ehartford/dolphin
5
  - shahules786/orca-chat
 
8
  inference: false
9
  language:
10
  - en
11
+ license: other
12
  model_creator: OpenAssistant
 
13
  model_name: Llama2 13B Orca 8K 3319
14
  model_type: llama
15
  pipeline_tag: text-generation
16
+ prompt_template: '<|system|>{system_message}</s><|prompter|>{prompt}</s><|assistant|>
17
+
18
+ '
19
  quantized_by: TheBloke
20
  tags:
21
  - sft
 
61
  <!-- repositories-available start -->
62
  ## Repositories available
63
 
64
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-AWQ)
65
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ)
66
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GGUF)
 
67
  * [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319)
68
  <!-- repositories-available end -->
69
 
 
76
  ```
77
 
78
  <!-- prompt-template end -->
79
+ <!-- licensing start -->
80
+ ## Licensing
81
+
82
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
83
 
84
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
85
+
86
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [OpenAssistant's Llama2 13B Orca 8K 3319](https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319).
87
+ <!-- licensing end -->
88
  <!-- README_GPTQ.md-provided-files start -->
89
  ## Provided files and GPTQ parameters
90
 
 
109
 
110
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
111
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
112
+ | [main](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.26 GB | Yes | 4-bit, without Act Order and group size 128g. |
113
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
114
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
115
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
116
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
117
  | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
118
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
119
  | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
120
 
121
  <!-- README_GPTQ.md-provided-files end -->
 
123
  <!-- README_GPTQ.md-download-from-branches start -->
124
  ## How to download from branches
125
 
126
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ:main`
127
  - With Git, you can clone a branch with:
128
  ```
129
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ
130
  ```
131
  - In Python Transformers code, the branch is the `revision` parameter; see below.
132
  <!-- README_GPTQ.md-download-from-branches end -->
 
139
 
140
  1. Click the **Model tab**.
141
  2. Under **Download custom model or LoRA**, enter `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ`.
142
+ - To download from a specific branch, enter for example `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ:main`
143
  - see Provided Files above for the list of branches for each option.
144
  3. Click **Download**.
145
  4. The model will start downloading. Once it's finished it will say "Done".
 
187
 
188
  model_name_or_path = "TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ"
189
  # To use a different branch, change revision
190
+ # For example: revision="main"
191
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
192
  device_map="auto",
193
+ trust_remote_code=False,
194
  revision="main")
195
 
196
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
203
  print("\n\n*** Generate:")
204
 
205
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
206
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
207
  print(tokenizer.decode(output[0]))
208
 
209
  # Inference can also be done using transformers' pipeline
 
214
  model=model,
215
  tokenizer=tokenizer,
216
  max_new_tokens=512,
217
+ do_sample=True,
218
  temperature=0.7,
219
  top_p=0.95,
220
+ top_k=40,
221
+ repetition_penalty=1.1
222
  )
223
 
224
  print(pipe(prompt_template)[0]['generated_text'])
 
243
 
244
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
245
 
246
+ ## Thanks, and how to contribute
247
 
248
  Thanks to the [chirper.ai](https://chirper.ai) team!
249
 
250
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
251
+
252
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
253
 
254
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
260
 
261
  **Special thanks to**: Aemon Algiz.
262
 
263
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
264
 
265
 
266
  Thank you to all my generous patrons and donaters!