File size: 29,885 Bytes
8460da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
---
base_model: amazon/MistralLite
inference: false
license: apache-2.0
model_creator: Amazon Web Services
model_name: MistralLite 7B
model_type: mistral
prompt_template: '<|prompter|>{prompt}</s><|assistant|>

  '
quantized_by: TheBloke
---
<!-- markdownlint-disable MD041 -->

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# MistralLite 7B - AWQ
- Model creator: [Amazon Web Services](https://huggingface.co/amazon)
- Original model: [MistralLite 7B](https://huggingface.co/amazon/MistralLite)

<!-- description start -->
## Description

This repo contains AWQ model files for [Amazon Web Services's MistralLite 7B](https://huggingface.co/amazon/MistralLite).


### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

It is supported by:

- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code

<!-- description end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/MistralLite-7B-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/MistralLite-7B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/MistralLite-7B-GGUF)
* [Amazon Web Services's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/amazon/MistralLite)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: Amazon

```
<|prompter|>{prompt}</s><|assistant|>

```

<!-- prompt-template end -->


<!-- README_AWQ.md-provided-files start -->
## Provided files, and AWQ parameters

For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.

Models are released as sharded safetensors files.

| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
| ------ | ---- | -- | ----------- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/MistralLite-7B-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.15 GB

<!-- README_AWQ.md-provided-files end -->

<!-- README_AWQ.md-text-generation-webui start -->
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)

Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/MistralLite-7B-AWQ`.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `MistralLite-7B-AWQ`
7. Select **Loader: AutoAWQ**.
8. Click Load, and the model will load and is now ready for use.
9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
<!-- README_AWQ.md-text-generation-webui end -->

<!-- README_AWQ.md-use-from-vllm start -->
## Multi-user inference server: vLLM

Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).

- Please ensure you are using vLLM version 0.2 or later.
- When using vLLM as a server, pass the `--quantization awq` parameter.

For example:

```shell
python3 python -m vllm.entrypoints.api_server --model TheBloke/MistralLite-7B-AWQ --quantization awq
```

- When using vLLM from Python code, again set `quantization=awq`.

For example:

```python
from vllm import LLM, SamplingParams

prompts = [
    "Tell me about AI",
    "Write a story about llamas",
    "What is 291 - 150?",
    "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
]
prompt_template=f'''<|prompter|>{prompt}</s><|assistant|>
'''

prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]

sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="TheBloke/MistralLite-7B-AWQ", quantization="awq", dtype="auto")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
<!-- README_AWQ.md-use-from-vllm start -->

<!-- README_AWQ.md-use-from-tgi start -->
## Multi-user inference server: Hugging Face Text Generation Inference (TGI)

Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`

Example Docker parameters:

```shell
--model-id TheBloke/MistralLite-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
```

Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):

```shell
pip3 install huggingface-hub
```

```python
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''<|prompter|>{prompt}</s><|assistant|>
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: ", response)
```
<!-- README_AWQ.md-use-from-tgi end -->

<!-- README_AWQ.md-use-from-python start -->
## Inference from Python code using AutoAWQ

### Install the AutoAWQ package

Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.1 or later.

```shell
pip3 install autoawq
```

If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:

```shell
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
```

### AutoAWQ example code

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

model_name_or_path = "TheBloke/MistralLite-7B-AWQ"

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
# Load model
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
                                          trust_remote_code=False, safetensors=True)

prompt = "Tell me about AI"
prompt_template=f'''<|prompter|>{prompt}</s><|assistant|>
'''

print("*** Running model.generate:")

token_input = tokenizer(
    prompt_template,
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    token_input,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    max_new_tokens=512
)

# Get the tokens from the output, decode them, print them
token_output = generation_output[0]
text_output = tokenizer.decode(token_output)
print("LLM output: ", text_output)

"""
# Inference should be possible with transformers pipeline as well in future
# But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
from transformers import pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])
"""
```
<!-- README_AWQ.md-use-from-python end -->

<!-- README_AWQ.md-compatibility start -->
## Compatibility

The files provided are tested to work with:

- [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
- [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.

<!-- README_AWQ.md-compatibility end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: Amazon Web Services's MistralLite 7B


# MistralLite Model

MistralLite is a fine-tuned [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) language model, with enhanced capabilities of processing long context (up to 32K tokens). By utilizing an adapted Rotary Embedding and sliding window during fine-tuning, MistralLite is able to **perform significantly better on several long context retrieve and answering tasks**, while keeping the simple model structure of the original model. MistralLite is useful for applications such as long context line and topic retrieval, summarization, question-answering, and etc. MistralLite can be deployed on a single AWS `g5.2x` instance with Sagemaker [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) endpoint, making it suitable for applications that require high performance in resource-constrained environments. You can also serve the MistralLite model directly using TGI docker containers. Also, MistralLite supports other ways of serving like [vLLM](https://github.com/vllm-project/vllm), and you can use MistralLite in Python by using the [HuggingFace transformers](https://huggingface.co/docs/transformers/index) and [FlashAttention-2](https://github.com/Dao-AILab/flash-attention) library.

MistralLite is similar to [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), and their similarities and differences are summarized below:
|Model|Fine-tuned on long contexts| Max context length| RotaryEmbedding adaptation| Sliding Window Size|
|----------|-------------:|------------:|-----------:|-----------:|
| Mistral-7B-Instruct-v0.1 | up to 8K tokens | 32K | rope_theta = 10000 | 4096 |
| MistralLite | up to 16K tokens | 32K | **rope_theta = 1000000** | **16384** |

## Motivation of Developing MistralLite

Since the release of [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), the model became increasingly popular because its strong performance 
on a wide range of benchmarks. But most of the benchmarks are evaluated on `short context`, and not much has been investigated on its performance on long context tasks.
Then We evaluated `Mistral-7B-Instruct-v0.1` against benchmarks that are specifically designed to assess the capabilities of LLMs in handling longer context. 
Although the performance of the models on long context was fairly competitive on long context less than 4096 tokens, 
there were some limitations on its performance on longer context. Motivated by improving its performance on longer context, we finetuned the Mistral 7B model, and produced `Mistrallite`. The model managed to `significantly boost the performance of long context handling` over Mistral-7B-Instruct-v0.1. The detailed `long context evalutaion results` are as below: 

1. [Topic Retrieval](https://lmsys.org/blog/2023-06-29-longchat/)
|Model Name|Input length| Input length | Input length| Input length| Input length|
|----------|-------------:|-------------:|------------:|-----------:|-----------:|
|          | 2851| 5568 |8313 | 11044 | 13780 
|   Mistral-7B-Instruct-v0.1  | 100%        | 50%       | 2%      | 0%     | 0% |
|   MistralLite   | **100%**        | **100%**       | **100%**      | **100%**     | **98%** |

2. [Line Retrieval](https://lmsys.org/blog/2023-06-29-longchat/#longeval-results)

|Model Name|Input length| Input length | Input length| Input length| Input length|Input length|
|----------|-------------:|-------------:|------------:|-----------:|-----------:|-----------:|
|          | 3818| 5661 |7505 | 9354 | 11188 | 12657 
|   Mistral-7B-Instruct-v0.1   | **98%**        | 62%       | 42%      | 42%     | 32% | 30% |
|   MistralLite   | **98%**        | **92%**       | **88%**      | **76%**     | **70%** | **60%** |

3. [Pass key Retrieval](https://github.com/epfml/landmark-attention/blob/main/llama/run_test.py#L101)

|Model Name|Input length| Input length | Input length| Input length|
|----------|-------------:|-------------:|------------:|-----------:|
|          | 3264| 5396 |8329 | 10197 | 
|   Mistral-7B-Instruct-v0.1   | **100%**        | 50%       | 20%      | 30%   |
|   MistralLite  | **100%**        | **100%**       | **100%**      | **100%**   |

4. [Question Answering with Long Input Texts](https://nyu-mll.github.io/quality/)
|Model Name| Test set Accuracy | Hard subset Accuracy|
|----------|-------------:|-------------:|
| Mistral-7B-Instruct-v0.1 | 44.3% | 39.7% |
| MistralLite | **64.4%** | **56.2%** |

### Example test on long context of 13400 tokens
- Context is from [Amazon Aurora FAQs](https://aws.amazon.com/rds/aurora/faqs/)
- Question: *please tell me how does pgvector help with Generative AI and give me some examples.*
- Answer from MistralLite:
  ```code
  pgvector is an open-source extension for PostgreSQL supported by Amazon Aurora PostgreSQL-Compatible Edition.

  You can use pgvector to store, search, index, and query billions of embeddings that are generated from machine learning (ML) and artificial intelligence (AI) models in your database, such as those from Amazon Bedrock (limited preview) or Amazon SageMaker. A vector embedding is a numerical representation that represents the semantic meaning of content such as text, images, and video.

  With pgvector, you can query embeddings in your Aurora PostgreSQL database to perform efficient semantic similarity searches of these data types, represented as vectors, combined with other tabular data in Aurora. This enables the use of generative AI and other AI/ML systems for new types of applications such as personalized recommendations based on similar text descriptions or images, candidate match based on interview notes, customer service next best action recommendations based on successful transcripts or chat session dialogs, and more.
  ```

## Model Details

- **Developed by:** [AWS Contributors](https://github.com/orgs/aws-samples/teams/aws-prototype-ml-apac)
- **Model type:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- **Language:** English
- **Finetuned from weights:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- **Finetuned on data:**
  - [SLidingEncoder and Decoder (SLED)](https://huggingface.co/datasets/tau/sled)
  - [(Long) Natural Questions (NQ)](https://huggingface.co/datasets/togethercomputer/Long-Data-Collections#multi-passage-qa-from-natural-questions)
  - [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- **Supported Serving Framework:**
  - [Text-Generation-Inference 1.1.0](https://github.com/huggingface/text-generation-inference/tree/v1.1.0)
  - [vLLM](https://github.com/vllm-project/vllm)
  - [HuggingFace transformers](https://huggingface.co/docs/transformers/index)
  - [HuggingFace Text Generation Inference (TGI) container on SageMaker](https://github.com/awslabs/llm-hosting-container)
- **Model License:** Apache 2.0
- **Contact:** [GitHub issues](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/issues)
- **Inference Code** [Github Repo](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/)

## How to Use MistralLite from Python Code (HuggingFace transformers) ##

**Important** - For an end-to-end example Jupyter notebook, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/huggingface-transformers/example_usage.ipynb).

### Install the necessary packages

Requires: [transformers](https://pypi.org/project/transformers/) 4.34.0 or later, [flash-attn](https://pypi.org/project/flash-attn/) 2.3.1.post1 or later, 
and [accelerate](https://pypi.org/project/accelerate/) 0.23.0 or later.

```shell
pip install transformers==4.34.0
pip install flash-attn==2.3.1.post1 --no-build-isolation
pip install accelerate==0.23.0
```
### You can then try the following example code

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import transformers
import torch

model_id = "amazon/MistralLite"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,
                                             torch_dtype=torch.bfloat16,
                                             use_flash_attention_2=True,
                                             device_map="auto",)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
)
prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>"

sequences = pipeline(
    prompt,
    max_new_tokens=400,
    do_sample=False,
    return_full_text=False,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"{seq['generated_text']}")
```
**Important** - Use the prompt template below for MistralLite:
```
<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>
```

## How to Serve MistralLite on TGI ##
**Important:** 
- For an end-to-end example Jupyter notebook using the native TGI container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/tgi/example_usage.ipynb).
- If the **input context length is greater than 12K tokens**, it is recommended using a custom TGI container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/tgi-custom/example_usage.ipynb).

### Start TGI server ###
Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`

Example Docker parameters:

```shell
docker run -d --gpus all --shm-size 1g -p 443:80 -v $(pwd)/models:/data ghcr.io/huggingface/text-generation-inference:1.1.0 \
      --model-id amazon/MistralLite \
      --max-input-length 16000 \
      --max-total-tokens 16384 \
      --max-batch-prefill-tokens 16384 \
      --trust-remote-code
```

### Perform Inference ###
Example Python code for inference with TGI (requires `text_generation` 0.6.1 or later):

```shell
pip install text_generation==0.6.1
```

```python
from text_generation import Client

SERVER_PORT = 443
SERVER_HOST = "localhost"
SERVER_URL = f"{SERVER_HOST}:{SERVER_PORT}"
tgi_client = Client(f"http://{SERVER_URL}", timeout=60)

def invoke_tgi(prompt, 
                      random_seed=1, 
                      max_new_tokens=400, 
                      print_stream=True,
                      assist_role=True):
    if (assist_role):
        prompt = f"<|prompter|>{prompt}</s><|assistant|>"
    output = ""
    for response in tgi_client.generate_stream(
        prompt,
        do_sample=False,
        max_new_tokens=max_new_tokens,
        return_full_text=False,
        #temperature=None,
        #truncate=None,
        #seed=random_seed,
        #typical_p=0.2,
    ):
        if hasattr(response, "token"):
            if not response.token.special:
                snippet = response.token.text
                output += snippet
                if (print_stream):
                    print(snippet, end='', flush=True)
    return output

prompt = "What are the main challenges to support a long context for LLM?"
result = invoke_tgi(prompt)
```

**Important** - When using MistralLite for inference for the first time, it may require a brief 'warm-up' period that can take 10s of seconds. However, subsequent inferences should be faster and return results in a more timely manner. This warm-up period is normal and should not affect the overall performance of the system once the initialisation period has been completed.


## How to Deploy MistralLite on Amazon SageMaker ##
**Important:** 
- For an end-to-end example Jupyter notebook using the SageMaker built-in container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/sagemaker-tgi/example_usage.ipynb).
- If the **input context length is greater than 12K tokens**, it is recommended using a custom docker container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/sagemaker-tgi-custom/example_usage.ipynb).

### Install the necessary packages

Requires: [sagemaker](https://pypi.org/project/sagemaker/) 2.192.1 or later.

```shell
pip install sagemaker==2.192.1
```

### Deploy the Model as A SageMaker Endpoint ###
To deploy MistralLite on a SageMaker endpoint, please follow the example code as below.
```python
import sagemaker
from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri
import time

sagemaker_session = sagemaker.Session()
region = sagemaker_session.boto_region_name
role = sagemaker.get_execution_role()

image_uri = get_huggingface_llm_image_uri(
  backend="huggingface", # or lmi
  region=region,
 version="1.1.0"
)

model_name = "MistralLite-" + time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime())

hub = {
    'HF_MODEL_ID':'amazon/MistralLite',
    'HF_TASK':'text-generation',
    'SM_NUM_GPUS':'1',
    "MAX_INPUT_LENGTH": '16000',
    "MAX_TOTAL_TOKENS": '16384',
    "MAX_BATCH_PREFILL_TOKENS": '16384',
    "MAX_BATCH_TOTAL_TOKENS":  '16384',
}

model = HuggingFaceModel(
    name=model_name,
    env=hub,
    role=role,
    image_uri=image_uri
)
predictor = model.deploy(
  initial_instance_count=1,
  instance_type="ml.g5.2xlarge",
  endpoint_name=model_name,
    
)
```

### Perform Inference ###
To call the endpoint, please follow the example code as below:

```python
input_data = {
  "inputs": "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>",
  "parameters": {
    "do_sample": False,
    "max_new_tokens": 400,
    "return_full_text": False,
    #"typical_p": 0.2,
    #"temperature":None,
    #"truncate":None,
    #"seed": 1,
  }
}
result = predictor.predict(input_data)[0]["generated_text"]
print(result)
```
or via [boto3](https://pypi.org/project/boto3/), and the example code is shown as below:

```python
import boto3
import json
def call_endpoint(client, prompt, endpoint_name, paramters):
    client = boto3.client("sagemaker-runtime")
    payload = {"inputs": prompt,
               "parameters": parameters}
    response = client.invoke_endpoint(EndpointName=endpoint_name,
                                      Body=json.dumps(payload), 
                                      ContentType="application/json")
    output = json.loads(response["Body"].read().decode())
    result = output[0]["generated_text"]
    return result

client = boto3.client("sagemaker-runtime")
parameters = {
    "do_sample": False,
    "max_new_tokens": 400,
    "return_full_text": False,
    #"typical_p": 0.2,
    #"temperature":None,
    #"truncate":None,
    #"seed": 1,
}
endpoint_name = predictor.endpoint_name
prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>"
result = call_endpoint(client, prompt, endpoint_name, parameters)
print(result)
```


## How to Serve MistralLite on vLLM ##
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).

**Important** - For an end-to-end example Jupyter notebook, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/vllm/example_usage.ipynb).

### Using vLLM as a server ###
When using vLLM as a server, pass the --model amazon/MistralLite parameter, for example:
```shell
python3 -m vllm.entrypoints.api_server --model amazon/MistralLite
```

### Using vLLM in Python Code ###
When using vLLM from Python code, Please see the example code as below:

```python
from vllm import LLM, SamplingParams

prompts = [
   "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>",
]
sampling_params = SamplingParams(temperature=0, max_tokens=100)

llm = LLM(model="amazon/MistralLite",)

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```

## Limitations ##
Before using the MistralLite model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content.