Upload new k-quant GGML quantised models.
Browse files
README.md
CHANGED
@@ -1,11 +1,8 @@
|
|
1 |
---
|
2 |
-
license: other
|
3 |
-
datasets:
|
4 |
-
- nomic-ai/gpt4all-j-prompt-generations
|
5 |
-
language:
|
6 |
-
- en
|
7 |
inference: false
|
|
|
8 |
---
|
|
|
9 |
<!-- header start -->
|
10 |
<div style="width: 100%;">
|
11 |
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
@@ -20,46 +17,82 @@ inference: false
|
|
20 |
</div>
|
21 |
<!-- header end -->
|
22 |
|
23 |
-
# GPT4All-13B-snoozy
|
24 |
|
25 |
-
These files are GGML format model files
|
26 |
|
27 |
-
GGML files are for CPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp)
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
## Repositories available
|
30 |
|
31 |
-
* [
|
32 |
-
* [
|
33 |
-
* [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
## Provided files
|
44 |
-
| Name | Quant method | Bits | Size | RAM required | Use case |
|
45 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
## How to run in `llama.cpp`
|
53 |
|
54 |
I use the following command line; adjust for your tastes and needs:
|
55 |
|
56 |
```
|
57 |
-
./main -t
|
58 |
-
### Instruction:
|
59 |
-
Write a story about llamas
|
60 |
-
### Response:"
|
61 |
```
|
62 |
-
Change `-t
|
|
|
|
|
63 |
|
64 |
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
|
65 |
|
@@ -87,14 +120,19 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
|
|
87 |
* Patreon: https://patreon.com/TheBlokeAI
|
88 |
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
89 |
|
90 |
-
**
|
|
|
|
|
91 |
|
92 |
Thank you to all my generous patrons and donaters!
|
|
|
93 |
<!-- footer end -->
|
94 |
|
95 |
-
# Original
|
|
|
|
|
96 |
|
97 |
-
|
98 |
|
99 |
## Model Details
|
100 |
|
@@ -107,7 +145,7 @@ This model has been finetuned from LLama 13B
|
|
107 |
- **Developed by:** [Nomic AI](https://home.nomic.ai)
|
108 |
- **Model Type:** A finetuned LLama 13B model on assistant style interaction data
|
109 |
- **Language(s) (NLP):** English
|
110 |
-
- **License:**
|
111 |
- **Finetuned from model [optional]:** LLama 13B
|
112 |
|
113 |
This model was trained on `nomic-ai/gpt4all-j-prompt-generations` using `revision=v1.3-groovy`
|
@@ -126,27 +164,32 @@ This model was trained on `nomic-ai/gpt4all-j-prompt-generations` using `revisio
|
|
126 |
Results on common sense reasoning benchmarks
|
127 |
|
128 |
```
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
152 |
```
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
2 |
inference: false
|
3 |
+
license: other
|
4 |
---
|
5 |
+
|
6 |
<!-- header start -->
|
7 |
<div style="width: 100%;">
|
8 |
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
|
|
17 |
</div>
|
18 |
<!-- header end -->
|
19 |
|
20 |
+
# Nomic.AI's GPT4All-13B-snoozy GGML
|
21 |
|
22 |
+
These files are GGML format model files for [Nomic.AI's GPT4All-13B-snoozy](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy).
|
23 |
|
24 |
+
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
|
25 |
+
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
26 |
+
* [KoboldCpp](https://github.com/LostRuins/koboldcpp)
|
27 |
+
* [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
|
28 |
+
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
|
29 |
+
* [ctransformers](https://github.com/marella/ctransformers)
|
30 |
|
31 |
## Repositories available
|
32 |
|
33 |
+
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/GPT4All-13B-snoozy-GPTQ)
|
34 |
+
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/GPT4All-13B-snoozy-GGML)
|
35 |
+
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy)
|
36 |
+
|
37 |
+
<!-- compatibility_ggml start -->
|
38 |
+
## Compatibility
|
39 |
+
|
40 |
+
### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
|
41 |
+
|
42 |
+
I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
|
43 |
+
|
44 |
+
They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
|
45 |
|
46 |
+
### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
|
47 |
|
48 |
+
These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
|
49 |
|
50 |
+
They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
|
51 |
|
52 |
+
## Explanation of the new k-quant methods
|
53 |
+
|
54 |
+
The new methods available are:
|
55 |
+
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
|
56 |
+
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
|
57 |
+
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
|
58 |
+
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
|
59 |
+
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
|
60 |
+
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
|
61 |
+
|
62 |
+
Refer to the Provided Files table below to see what files use which methods, and how.
|
63 |
+
<!-- compatibility_ggml end -->
|
64 |
|
65 |
## Provided files
|
66 |
+
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
67 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
68 |
+
| GPT4All-13B-snoozy.ggmlv3.q2_K.bin | q2_K | 2 | 5.43 GB | 7.93 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
|
69 |
+
| GPT4All-13B-snoozy.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.87 GB | 9.37 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
70 |
+
| GPT4All-13B-snoozy.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.25 GB | 8.75 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
71 |
+
| GPT4All-13B-snoozy.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.59 GB | 8.09 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
|
72 |
+
| GPT4All-13B-snoozy.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. |
|
73 |
+
| GPT4All-13B-snoozy.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
|
74 |
+
| GPT4All-13B-snoozy.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.82 GB | 10.32 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
|
75 |
+
| GPT4All-13B-snoozy.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.32 GB | 9.82 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
|
76 |
+
| GPT4All-13B-snoozy.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
|
77 |
+
| GPT4All-13B-snoozy.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
|
78 |
+
| GPT4All-13B-snoozy.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.21 GB | 11.71 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
|
79 |
+
| GPT4All-13B-snoozy.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.95 GB | 11.45 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
|
80 |
+
| GPT4All-13B-snoozy.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
|
81 |
+
| GPT4All-13B-snoozy.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
|
82 |
+
|
83 |
+
|
84 |
+
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
85 |
|
86 |
## How to run in `llama.cpp`
|
87 |
|
88 |
I use the following command line; adjust for your tastes and needs:
|
89 |
|
90 |
```
|
91 |
+
./main -t 10 -ngl 32 -m GPT4All-13B-snoozy.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
|
|
|
|
|
|
|
92 |
```
|
93 |
+
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
|
94 |
+
|
95 |
+
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
|
96 |
|
97 |
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
|
98 |
|
|
|
120 |
* Patreon: https://patreon.com/TheBlokeAI
|
121 |
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
122 |
|
123 |
+
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
|
124 |
+
|
125 |
+
**Patreon special mentions**: Ajan Kanaga, Kalila, Derek Yates, Sean Connelly, Luke, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, trip7s trip, Jonathan Leane, Talal Aujan, Artur Olbinski, Cory Kujawski, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Johann-Peter Hartmann.
|
126 |
|
127 |
Thank you to all my generous patrons and donaters!
|
128 |
+
|
129 |
<!-- footer end -->
|
130 |
|
131 |
+
# Original model card: Nomic.AI's GPT4All-13B-snoozy
|
132 |
+
|
133 |
+
# Model Card for GPT4All-13b-snoozy
|
134 |
|
135 |
+
A GPL licensed chatbot trained over a massive curated corpus of assistant interactions including word problems, multi-turn dialogue, code, poems, songs, and stories.
|
136 |
|
137 |
## Model Details
|
138 |
|
|
|
145 |
- **Developed by:** [Nomic AI](https://home.nomic.ai)
|
146 |
- **Model Type:** A finetuned LLama 13B model on assistant style interaction data
|
147 |
- **Language(s) (NLP):** English
|
148 |
+
- **License:** GPL
|
149 |
- **Finetuned from model [optional]:** LLama 13B
|
150 |
|
151 |
This model was trained on `nomic-ai/gpt4all-j-prompt-generations` using `revision=v1.3-groovy`
|
|
|
164 |
Results on common sense reasoning benchmarks
|
165 |
|
166 |
```
|
167 |
+
| Model | BoolQ | PIQA | HellaSwag | WinoGrande | ARC-e | ARC-c | OBQA | Avg. |
|
168 |
+
|:--------------------------|:--------:|:--------:|:---------:|:----------:|:--------:|:--------:|:--------:|:--------:|
|
169 |
+
| GPT4All-J 6B v1.0 | 73.4 | 74.8 | 63.4 | 64.7 | 54.9 | 36.0 | 40.2 | 58.2 |
|
170 |
+
| GPT4All-J v1.1-breezy | 74.0 | 75.1 | 63.2 | 63.6 | 55.4 | 34.9 | 38.4 | 57.8 |
|
171 |
+
| GPT4All-J v1.2-jazzy | 74.8 | 74.9 | 63.6 | 63.8 | 56.6 | 35.3 | 41.0 | 58.6 |
|
172 |
+
| GPT4All-J v1.3-groovy | 73.6 | 74.3 | 63.8 | 63.5 | 57.7 | 35.0 | 38.8 | 58.1 |
|
173 |
+
| GPT4All-J Lora 6B | 68.6 | 75.8 | 66.2 | 63.5 | 56.4 | 35.7 | 40.2 | 58.1 |
|
174 |
+
| GPT4All LLaMa Lora 7B | 73.1 | 77.6 | 72.1 | 67.8 | 51.1 | 40.4 | 40.2 | 60.3 |
|
175 |
+
| GPT4All 13B snoozy | **83.3** | 79.2 | 75.0 | **71.3** | 60.9 | 44.2 | 43.4 | **65.3** |
|
176 |
+
| Dolly 6B | 68.8 | 77.3 | 67.6 | 63.9 | 62.9 | 38.7 | 41.2 | 60.1 |
|
177 |
+
| Dolly 12B | 56.7 | 75.4 | 71.0 | 62.2 | 64.6 | 38.5 | 40.4 | 58.4 |
|
178 |
+
| Alpaca 7B | 73.9 | 77.2 | 73.9 | 66.1 | 59.8 | 43.3 | 43.4 | 62.4 |
|
179 |
+
| Alpaca Lora 7B | 74.3 | **79.3** | 74.0 | 68.8 | 56.6 | 43.9 | 42.6 | 62.8 |
|
180 |
+
| GPT-J 6.7B | 65.4 | 76.2 | 66.2 | 64.1 | 62.2 | 36.6 | 38.2 | 58.4 |
|
181 |
+
| LLama 7B | 73.1 | 77.4 | 73.0 | 66.9 | 52.5 | 41.4 | 42.4 | 61.0 |
|
182 |
+
| LLama 13B | 68.5 | 79.1 | 76.2 | 70.1 | 60.0 | **44.6** | 42.2 | 63.0 |
|
183 |
+
| Pythia 6.7B | 63.5 | 76.3 | 64.0 | 61.1 | 61.3 | 35.2 | 37.2 | 57.0 |
|
184 |
+
| Pythia 12B | 67.7 | 76.6 | 67.3 | 63.8 | 63.9 | 34.8 | 38 | 58.9 |
|
185 |
+
| Fastchat T5 | 81.5 | 64.6 | 46.3 | 61.8 | 49.3 | 33.3 | 39.4 | 53.7 |
|
186 |
+
| Fastchat Vicuña 7B | 76.6 | 77.2 | 70.7 | 67.3 | 53.5 | 41.2 | 40.8 | 61.0 |
|
187 |
+
| Fastchat Vicuña 13B | 81.5 | 76.8 | 73.3 | 66.7 | 57.4 | 42.7 | 43.6 | 63.1 |
|
188 |
+
| StableVicuña RLHF | 82.3 | 78.6 | 74.1 | 70.9 | 61.0 | 43.5 | **44.4** | 65.0 |
|
189 |
+
| StableLM Tuned | 62.5 | 71.2 | 53.6 | 54.8 | 52.4 | 31.1 | 33.4 | 51.3 |
|
190 |
+
| StableLM Base | 60.1 | 67.4 | 41.2 | 50.1 | 44.9 | 27.0 | 32.0 | 42.2 |
|
191 |
+
| Koala 13B | 76.5 | 77.9 | 72.6 | 68.8 | 54.3 | 41.0 | 42.8 | 62.0 |
|
192 |
+
| Open Assistant Pythia 12B | 67.9 | 78.0 | 68.1 | 65.0 | 64.2 | 40.4 | 43.2 | 61.0 |
|
193 |
+
| Mosaic mpt-7B | 74.8 | **79.3** | **76.3** | 68.6 | **70.0** | 42.2 | 42.6 | 64.8 |
|
194 |
+
| text-davinci-003 | 88.1 | 83.8 | 83.4 | 75.8 | 83.9 | 63.9 | 51.0 | 75.7 |
|
195 |
```
|