TheBloke commited on
Commit
a4f0310
·
1 Parent(s): 98e3452

Initial GGML model commit

Browse files
Files changed (1) hide show
  1. README.md +79 -88
README.md CHANGED
@@ -1,14 +1,16 @@
1
  ---
2
  inference: false
 
 
3
  license: llama2
4
  model_creator: Meta
5
- model_link: https://ai.meta.com/resources/models-and-libraries/llama-downloads
6
  model_name: CodeLlama 13B
7
  model_type: llama
 
8
  quantized_by: TheBloke
9
  tags:
10
  - llama-2
11
- - codellama
12
  ---
13
 
14
  <!-- header start -->
@@ -30,11 +32,11 @@ tags:
30
 
31
  # CodeLlama 13B - GGML
32
  - Model creator: [Meta](https://huggingface.co/meta-llama)
33
- - Original model: [CodeLlama 13B](https://ai.meta.com/resources/models-and-libraries/llama-downloads)
34
 
35
  ## Description
36
 
37
- This repo contains GGML format model files for [Meta's CodeLlama 13B](https://ai.meta.com/resources/models-and-libraries/llama-downloads).
38
 
39
  ### Important note regarding GGML files.
40
 
@@ -55,7 +57,7 @@ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/gger
55
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CodeLlama-13B-GPTQ)
56
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CodeLlama-13B-GGUF)
57
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/CodeLlama-13B-GGML)
58
- * [Meta's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/CodeLlama-13B-fp16)
59
 
60
  ## Prompt template: TBC
61
 
@@ -157,7 +159,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
157
 
158
  **Special thanks to**: Aemon Algiz.
159
 
160
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
161
 
162
 
163
  Thank you to all my generous patrons and donaters!
@@ -168,123 +170,112 @@ And thank you again to a16z for their generous grant.
168
 
169
  # Original model card: Meta's CodeLlama 13B
170
 
 
 
171
 
172
- <!-- header start -->
173
- <!-- 200823 -->
174
- <div style="width: auto; margin-left: auto; margin-right: auto">
175
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
176
- </div>
177
- <div style="display: flex; justify-content: space-between; width: 100%;">
178
- <div style="display: flex; flex-direction: column; align-items: flex-start;">
179
- <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
180
- </div>
181
- <div style="display: flex; flex-direction: column; align-items: flex-end;">
182
- <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
183
- </div>
184
- </div>
185
- <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
186
- <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
187
- <!-- header end -->
188
-
189
- # CodeLlama 13B fp16
190
- - Model creator: [Meta](https://ai.meta.com/llama/)
191
-
192
- ## Description
193
-
194
- This is Transformers/HF format fp16 weights for CodeLlama 13B. It is the result of downloading CodeLlama 13B from [Meta](https://ai.meta.com/blog/code-llama-large-language-model-coding/) and converting to HF using `convert_llama_weights_to_hf.py`.
195
-
196
- Quantisations will be coming shortly.
197
-
198
- Please note that due to a change in the RoPE Theta value, for correct results you must load these FP16 models with `trust_remote_code=True`
199
-
200
- Credit to @emozilla for creating the necessary modelling code to achieve this!
201
-
202
- ## Prompt template: TBC
203
-
204
-
205
- <!-- footer start -->
206
- <!-- 200823 -->
207
- ## Discord
208
 
209
- For further support, and discussions on these models and AI in general, join us at:
210
-
211
- [TheBloke AI's Discord server](https://discord.gg/theblokeai)
212
-
213
- ## Thanks, and how to contribute.
214
-
215
- Thanks to the [chirper.ai](https://chirper.ai) team!
216
-
217
- I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
218
-
219
- If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
220
-
221
- Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
222
-
223
- * Patreon: https://patreon.com/TheBlokeAI
224
- * Ko-Fi: https://ko-fi.com/TheBlokeAI
225
-
226
- **Special thanks to**: Aemon Algiz.
227
 
228
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
229
 
 
230
 
231
- Thank you to all my generous patrons and donaters!
 
 
232
 
233
- And thank you again to a16z for their generous grant.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
 
235
- <!-- footer end -->
236
 
237
- # Original model card
 
238
 
239
- # Code Llama
240
 
241
- ## **Model Details**
242
 
243
- **Model Developers** Meta AI
 
 
244
 
245
- **Variations** Code Llama comes in three model sizes, and three variants:
246
- 1) Code Llama: our base models designed for general code synthesis and understanding
247
- 2) Code Llama - Python: designed specifically for Python
248
- 3) Code Llama - Instruct: for instruction following and safer deployment
249
-
250
  All variants are available in sizes of 7B, 13B and 34B parameters.
251
 
 
 
252
  **Input** Models input text only.
253
 
254
- **Output** Models output text only.
255
 
256
- **Model Architecture** Code Llama and its variants are autoregressive language models using optimized transformer architectures. Code Llama 7B and 13B additionally support infilling text generation. All models were fine-tuned with up to 16K tokens, and support up to 100K tokens at inference time.
257
 
258
  **Model Dates** Code Llama and its variants have been trained between January 2023 and July 2023.
259
 
260
- **Status** This is a static model trained on an offline dataset. Future versions of Code Llama - Instruct will be released as we improve model safety with community feedback.
261
 
262
- **Licence** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/).
263
 
264
  **Research Paper** More information can be found in the paper "[Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)".
265
 
266
- **Where to send comments** Instructions on how to provide feedback or comments on the model can be found in the model [README](README.md), or by opening an issue in the GitHub repository ([https://github.com/facebookresearch/codellama/](https://github.com/facebookresearch/codellama/)).
267
-
268
- ## **Intended Use**
269
  **Intended Use Cases** Code Llama and its variants is intended for commercial and research use in English and relevant programming languages. The base model Code Llama can be adapted for a variety of code synthesis and understanding tasks, Code Llama - Python is designed specifically to handle the Python programming language, and Code Llama - Instruct is intended to be safer to use for code assistant and generation applications.
270
 
271
  **Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Code Llama and its variants.
272
 
273
- ## **Hardware and Software**
274
- **Training Factors**
275
- We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster.
276
 
277
  **Carbon Footprint** In aggregate, training all 9 Code Llama models required 400K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 65.3 tCO2eq, 100% of which were offset by Meta’s sustainability program.
278
 
279
- **Training data**
 
280
  All experiments reported here and the released models have been trained and fine-tuned using the same data as Llama 2 with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) for details).
281
- Code Llama - Instruct uses additional instruction fine-tuning data.
282
 
283
- **Evaluation Results**
 
284
  See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper.
285
 
286
- ## **Ethical Considerations and Limitations**
 
 
287
  Code Llama and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Code Llama’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of Code Llama, developers should perform safety testing and tuning tailored to their specific applications of the model.
288
 
289
  Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-user-guide](https://ai.meta.com/llama/responsible-user-guide).
290
-
 
1
  ---
2
  inference: false
3
+ language:
4
+ - code
5
  license: llama2
6
  model_creator: Meta
7
+ model_link: https://huggingface.co/codellama/CodeLlama-13b-hf
8
  model_name: CodeLlama 13B
9
  model_type: llama
10
+ pipeline_tag: text-generation
11
  quantized_by: TheBloke
12
  tags:
13
  - llama-2
 
14
  ---
15
 
16
  <!-- header start -->
 
32
 
33
  # CodeLlama 13B - GGML
34
  - Model creator: [Meta](https://huggingface.co/meta-llama)
35
+ - Original model: [CodeLlama 13B](https://huggingface.co/codellama/CodeLlama-13b-hf)
36
 
37
  ## Description
38
 
39
+ This repo contains GGML format model files for [Meta's CodeLlama 13B](https://huggingface.co/codellama/CodeLlama-13b-hf).
40
 
41
  ### Important note regarding GGML files.
42
 
 
57
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CodeLlama-13B-GPTQ)
58
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CodeLlama-13B-GGUF)
59
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/CodeLlama-13B-GGML)
60
+ * [Meta's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/codellama/CodeLlama-13b-hf)
61
 
62
  ## Prompt template: TBC
63
 
 
159
 
160
  **Special thanks to**: Aemon Algiz.
161
 
162
+ **Patreon special mentions**: Kacper Wikieł, knownsqashed, Leonard Tan, Asp the Wyvern, Daniel P. Andersen, Luke Pendergrass, Stanislav Ovsiannikov, RoA, Dave, Ai Maven, Kalila, Will Dee, Imad Khwaja, Nitin Borwankar, Joseph William Delisle, Tony Hughes, Cory Kujawski, Rishabh Srivastava, Russ Johnson, Stephen Murray, Lone Striker, Johann-Peter Hartmann, Elle, J, Deep Realms, SuperWojo, Raven Klaugh, Sebastain Graf, ReadyPlayerEmma, Alps Aficionado, Mano Prime, Derek Yates, Gabriel Puliatti, Mesiah Bishop, Magnesian, Sean Connelly, biorpg, Iucharbius, Olakabola, Fen Risland, Space Cruiser, theTransient, Illia Dulskyi, Thomas Belote, Spencer Kim, Pieter, John Detwiler, Fred von Graf, Michael Davis, Swaroop Kallakuri, subjectnull, Clay Pascal, Subspace Studios, Chris Smitley, Enrico Ros, usrbinkat, Steven Wood, alfie_i, David Ziegler, Willem Michiel, Matthew Berman, Andrey, Pyrater, Jeffrey Morgan, vamX, LangChain4j, Luke @flexchar, Trenton Dambrowitz, Pierre Kircher, Alex, Sam, James Bentley, Edmond Seymore, Eugene Pentland, Pedro Madruga, Rainer Wilmers, Dan Guido, Nathan LeClaire, Spiking Neurons AB, Talal Aujan, zynix, Artur Olbinski, Michael Levine, 阿明, K, John Villwock, Nikolai Manek, Femi Adebogun, senxiiz, Deo Leter, NimbleBox.ai, Viktor Bowallius, Geoffrey Montalvo, Mandus, Ajan Kanaga, ya boyyy, Jonathan Leane, webtim, Brandon Frisco, danny, Alexandros Triantafyllidis, Gabriel Tamborski, Randy H, terasurfer, Vadim, Junyu Yang, Vitor Caleffi, Chadd, transmissions 11
163
 
164
 
165
  Thank you to all my generous patrons and donaters!
 
170
 
171
  # Original model card: Meta's CodeLlama 13B
172
 
173
+ # **Code Llama**
174
+ Code Llama is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 34 billion parameters. This is the repository for the base 13B version in the Hugging Face Transformers format. This model is designed for general code synthesis and understanding. Links to other models can be found in the index at the bottom.
175
 
176
+ | | Base Model | Python | Instruct |
177
+ | --- | ----------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------- |
178
+ | 7B | [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) | [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) | [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) |
179
+ | 13B | [codellama/CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf) | [codellama/CodeLlama-13b-Python-hf](https://huggingface.co/codellama/CodeLlama-13b-Python-hf) | [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) |
180
+ | 34B | [codellama/CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf) | [codellama/CodeLlama-34b-Python-hf](https://huggingface.co/codellama/CodeLlama-34b-Python-hf) | [codellama/CodeLlama-34b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf) |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
 
183
+ ## Model Use
184
 
185
+ To use this model, please make sure to install transformers from `main` until the next version is released:
186
 
187
+ ```bash
188
+ pip install git+https://github.com/huggingface/transformers.git@main accelerate
189
+ ```
190
 
191
+ Model capabilities:
192
+
193
+ - [x] Code completion.
194
+ - [x] Infilling.
195
+ - [ ] Instructions / chat.
196
+ - [ ] Python specialist.
197
+
198
+
199
+ ```python
200
+ from transformers import AutoTokenizer
201
+ import transformers
202
+ import torch
203
+
204
+ model = "codellama/CodeLlama-13b-hf"
205
+
206
+ tokenizer = AutoTokenizer.from_pretrained(model)
207
+ pipeline = transformers.pipeline(
208
+ "text-generation",
209
+ model=model,
210
+ torch_dtype=torch.float16,
211
+ device_map="auto",
212
+ )
213
+
214
+ sequences = pipeline(
215
+ 'import socket\n\ndef ping_exponential_backoff(host: str):',
216
+ do_sample=True,
217
+ top_k=10,
218
+ temperature=0.1,
219
+ top_p=0.95,
220
+ num_return_sequences=1,
221
+ eos_token_id=tokenizer.eos_token_id,
222
+ max_length=200,
223
+ )
224
+ for seq in sequences:
225
+ print(f"Result: {seq['generated_text']}")
226
+ ```
227
 
 
228
 
229
+ ## Model Details
230
+ *Note: Use of this model is governed by the Meta license. Meta developed and publicly released the Code Llama family of large language models (LLMs).
231
 
232
+ **Model Developers** Meta
233
 
234
+ **Variations** Code Llama comes in three model sizes, and three variants:
235
 
236
+ * Code Llama: base models designed for general code synthesis and understanding
237
+ * Code Llama - Python: designed specifically for Python
238
+ * Code Llama - Instruct: for instruction following and safer deployment
239
 
 
 
 
 
 
240
  All variants are available in sizes of 7B, 13B and 34B parameters.
241
 
242
+ **This repository contains the base version of the 13B parameters model.**
243
+
244
  **Input** Models input text only.
245
 
246
+ **Output** Models generate text only.
247
 
248
+ **Model Architecture** Code Llama is an auto-regressive language model that uses an optimized transformer architecture.
249
 
250
  **Model Dates** Code Llama and its variants have been trained between January 2023 and July 2023.
251
 
252
+ **Status** This is a static model trained on an offline dataset. Future versions of Code Llama - Instruct will be released as we improve model safety with community feedback.
253
 
254
+ **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
255
 
256
  **Research Paper** More information can be found in the paper "[Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)".
257
 
258
+ ## Intended Use
 
 
259
  **Intended Use Cases** Code Llama and its variants is intended for commercial and research use in English and relevant programming languages. The base model Code Llama can be adapted for a variety of code synthesis and understanding tasks, Code Llama - Python is designed specifically to handle the Python programming language, and Code Llama - Instruct is intended to be safer to use for code assistant and generation applications.
260
 
261
  **Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Code Llama and its variants.
262
 
263
+ ## Hardware and Software
264
+ **Training Factors** We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster.
 
265
 
266
  **Carbon Footprint** In aggregate, training all 9 Code Llama models required 400K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 65.3 tCO2eq, 100% of which were offset by Meta’s sustainability program.
267
 
268
+ ## Training Data
269
+
270
  All experiments reported here and the released models have been trained and fine-tuned using the same data as Llama 2 with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) for details).
 
271
 
272
+ ## Evaluation Results
273
+
274
  See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper.
275
 
276
+
277
+ ## Ethical Considerations and Limitations
278
+
279
  Code Llama and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Code Llama’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of Code Llama, developers should perform safety testing and tuning tailored to their specific applications of the model.
280
 
281
  Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-user-guide](https://ai.meta.com/llama/responsible-user-guide).