TheBloke commited on
Commit
3ae1d27
·
verified ·
1 Parent(s): a4bd044

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +455 -0
README.md ADDED
@@ -0,0 +1,455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ajibawa-2023/Code-290k-13B
3
+ datasets:
4
+ - ajibawa-2023/Code-290k-ShareGPT
5
+ inference: false
6
+ language:
7
+ - en
8
+ license: cc-by-nc-nd-4.0
9
+ model_creator: Feynman Innovations
10
+ model_name: Code 290K 13B
11
+ model_type: llama
12
+ prompt_template: 'This is a conversation with your helpful AI assistant. AI assistant
13
+ can generate Code in various Programming Languages along with necessary explanation.
14
+
15
+
16
+ Context
17
+
18
+ You are a helpful AI assistant.
19
+
20
+
21
+ USER: {prompt}
22
+
23
+ ASSISTANT:
24
+
25
+ '
26
+ quantized_by: TheBloke
27
+ tags:
28
+ - code
29
+ ---
30
+ <!-- markdownlint-disable MD041 -->
31
+
32
+ <!-- header start -->
33
+ <!-- 200823 -->
34
+ <div style="width: auto; margin-left: auto; margin-right: auto">
35
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
36
+ </div>
37
+ <div style="display: flex; justify-content: space-between; width: 100%;">
38
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
39
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
40
+ </div>
41
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
42
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
43
+ </div>
44
+ </div>
45
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
46
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
47
+ <!-- header end -->
48
+
49
+ # Code 290K 13B - GPTQ
50
+ - Model creator: [Feynman Innovations](https://huggingface.co/ajibawa-2023)
51
+ - Original model: [Code 290K 13B](https://huggingface.co/ajibawa-2023/Code-290k-13B)
52
+
53
+ <!-- description start -->
54
+ # Description
55
+
56
+ This repo contains GPTQ model files for [Feynman Innovations's Code 290K 13B](https://huggingface.co/ajibawa-2023/Code-290k-13B).
57
+
58
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
59
+
60
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
61
+
62
+ <!-- description end -->
63
+ <!-- repositories-available start -->
64
+ ## Repositories available
65
+
66
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Code-290k-13B-AWQ)
67
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Code-290k-13B-GPTQ)
68
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Code-290k-13B-GGUF)
69
+ * [Feynman Innovations's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ajibawa-2023/Code-290k-13B)
70
+ <!-- repositories-available end -->
71
+
72
+ <!-- prompt-template start -->
73
+ ## Prompt template: Ajibawa-Code
74
+
75
+ ```
76
+ This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation.
77
+
78
+ Context
79
+ You are a helpful AI assistant.
80
+
81
+ USER: {prompt}
82
+ ASSISTANT:
83
+
84
+ ```
85
+
86
+ <!-- prompt-template end -->
87
+ <!-- licensing start -->
88
+ ## Licensing
89
+
90
+ The creator of the source model has listed its license as `cc-by-nc-nd-4.0`, and this quantization has therefore used that same license.
91
+
92
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
93
+
94
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Feynman Innovations's Code 290K 13B](https://huggingface.co/ajibawa-2023/Code-290k-13B).
95
+ <!-- licensing end -->
96
+
97
+ <!-- README_GPTQ.md-compatible clients start -->
98
+ ## Known compatible clients / servers
99
+
100
+ GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
101
+
102
+ These GPTQ models are known to work in the following inference servers/webuis.
103
+
104
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
105
+ - [KoboldAI United](https://github.com/henk717/koboldai)
106
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
107
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
108
+
109
+ This may not be a complete list; if you know of others, please let me know!
110
+ <!-- README_GPTQ.md-compatible clients end -->
111
+
112
+ <!-- README_GPTQ.md-provided-files start -->
113
+ ## Provided files, and GPTQ parameters
114
+
115
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
116
+
117
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
118
+
119
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
120
+
121
+ <details>
122
+ <summary>Explanation of GPTQ parameters</summary>
123
+
124
+ - Bits: The bit size of the quantised model.
125
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
126
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
127
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
128
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
129
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
130
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
131
+
132
+ </details>
133
+
134
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
135
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
136
+ | [main](https://huggingface.co/TheBloke/Code-290k-13B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/viewer/) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
137
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Code-290k-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/viewer/) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
138
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Code-290k-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/viewer/) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
139
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Code-290k-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/viewer/) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
140
+ | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/Code-290k-13B-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/viewer/) | 4096 | 14.54 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
141
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Code-290k-13B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/viewer/) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
142
+
143
+ <!-- README_GPTQ.md-provided-files end -->
144
+
145
+ <!-- README_GPTQ.md-download-from-branches start -->
146
+ ## How to download, including from branches
147
+
148
+ ### In text-generation-webui
149
+
150
+ To download from the `main` branch, enter `TheBloke/Code-290k-13B-GPTQ` in the "Download model" box.
151
+
152
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Code-290k-13B-GPTQ:gptq-4bit-32g-actorder_True`
153
+
154
+ ### From the command line
155
+
156
+ I recommend using the `huggingface-hub` Python library:
157
+
158
+ ```shell
159
+ pip3 install huggingface-hub
160
+ ```
161
+
162
+ To download the `main` branch to a folder called `Code-290k-13B-GPTQ`:
163
+
164
+ ```shell
165
+ mkdir Code-290k-13B-GPTQ
166
+ huggingface-cli download TheBloke/Code-290k-13B-GPTQ --local-dir Code-290k-13B-GPTQ --local-dir-use-symlinks False
167
+ ```
168
+
169
+ To download from a different branch, add the `--revision` parameter:
170
+
171
+ ```shell
172
+ mkdir Code-290k-13B-GPTQ
173
+ huggingface-cli download TheBloke/Code-290k-13B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir Code-290k-13B-GPTQ --local-dir-use-symlinks False
174
+ ```
175
+
176
+ <details>
177
+ <summary>More advanced huggingface-cli download usage</summary>
178
+
179
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
180
+
181
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
182
+
183
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
184
+
185
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
186
+
187
+ ```shell
188
+ pip3 install hf_transfer
189
+ ```
190
+
191
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
192
+
193
+ ```shell
194
+ mkdir Code-290k-13B-GPTQ
195
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Code-290k-13B-GPTQ --local-dir Code-290k-13B-GPTQ --local-dir-use-symlinks False
196
+ ```
197
+
198
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
199
+ </details>
200
+
201
+ ### With `git` (**not** recommended)
202
+
203
+ To clone a specific branch with `git`, use a command like this:
204
+
205
+ ```shell
206
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Code-290k-13B-GPTQ
207
+ ```
208
+
209
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
210
+
211
+ <!-- README_GPTQ.md-download-from-branches end -->
212
+ <!-- README_GPTQ.md-text-generation-webui start -->
213
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
214
+
215
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
216
+
217
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
218
+
219
+ 1. Click the **Model tab**.
220
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Code-290k-13B-GPTQ`.
221
+
222
+ - To download from a specific branch, enter for example `TheBloke/Code-290k-13B-GPTQ:gptq-4bit-32g-actorder_True`
223
+ - see Provided Files above for the list of branches for each option.
224
+
225
+ 3. Click **Download**.
226
+ 4. The model will start downloading. Once it's finished it will say "Done".
227
+ 5. In the top left, click the refresh icon next to **Model**.
228
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Code-290k-13B-GPTQ`
229
+ 7. The model will automatically load, and is now ready for use!
230
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
231
+
232
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
233
+
234
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
235
+
236
+ <!-- README_GPTQ.md-text-generation-webui end -->
237
+
238
+ <!-- README_GPTQ.md-use-from-tgi start -->
239
+ ## Serving this model from Text Generation Inference (TGI)
240
+
241
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
242
+
243
+ Example Docker parameters:
244
+
245
+ ```shell
246
+ --model-id TheBloke/Code-290k-13B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
247
+ ```
248
+
249
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
250
+
251
+ ```shell
252
+ pip3 install huggingface-hub
253
+ ```
254
+
255
+ ```python
256
+ from huggingface_hub import InferenceClient
257
+
258
+ endpoint_url = "https://your-endpoint-url-here"
259
+
260
+ prompt = "Tell me about AI"
261
+ prompt_template=f'''This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation.
262
+
263
+ Context
264
+ You are a helpful AI assistant.
265
+
266
+ USER: {prompt}
267
+ ASSISTANT:
268
+ '''
269
+
270
+ client = InferenceClient(endpoint_url)
271
+ response = client.text_generation(
272
+ prompt_template,
273
+ max_new_tokens=128,
274
+ do_sample=True,
275
+ temperature=0.7,
276
+ top_p=0.95,
277
+ top_k=40,
278
+ repetition_penalty=1.1
279
+ )
280
+
281
+ print(f"Model output: {response}")
282
+ ```
283
+ <!-- README_GPTQ.md-use-from-tgi end -->
284
+ <!-- README_GPTQ.md-use-from-python start -->
285
+ ## Python code example: inference from this GPTQ model
286
+
287
+ ### Install the necessary packages
288
+
289
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
290
+
291
+ ```shell
292
+ pip3 install --upgrade transformers optimum
293
+ # If using PyTorch 2.1 + CUDA 12.x:
294
+ pip3 install --upgrade auto-gptq
295
+ # or, if using PyTorch 2.1 + CUDA 11.x:
296
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
297
+ ```
298
+
299
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
300
+
301
+ ```shell
302
+ pip3 uninstall -y auto-gptq
303
+ git clone https://github.com/PanQiWei/AutoGPTQ
304
+ cd AutoGPTQ
305
+ git checkout v0.5.1
306
+ pip3 install .
307
+ ```
308
+
309
+ ### Example Python code
310
+
311
+ ```python
312
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
313
+
314
+ model_name_or_path = "TheBloke/Code-290k-13B-GPTQ"
315
+ # To use a different branch, change revision
316
+ # For example: revision="gptq-4bit-32g-actorder_True"
317
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
318
+ device_map="auto",
319
+ trust_remote_code=False,
320
+ revision="main")
321
+
322
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
323
+
324
+ prompt = "Write a story about llamas"
325
+ system_message = "You are a story writing assistant"
326
+ prompt_template=f'''This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation.
327
+
328
+ Context
329
+ You are a helpful AI assistant.
330
+
331
+ USER: {prompt}
332
+ ASSISTANT:
333
+ '''
334
+
335
+ print("\n\n*** Generate:")
336
+
337
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
338
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
339
+ print(tokenizer.decode(output[0]))
340
+
341
+ # Inference can also be done using transformers' pipeline
342
+
343
+ print("*** Pipeline:")
344
+ pipe = pipeline(
345
+ "text-generation",
346
+ model=model,
347
+ tokenizer=tokenizer,
348
+ max_new_tokens=512,
349
+ do_sample=True,
350
+ temperature=0.7,
351
+ top_p=0.95,
352
+ top_k=40,
353
+ repetition_penalty=1.1
354
+ )
355
+
356
+ print(pipe(prompt_template)[0]['generated_text'])
357
+ ```
358
+ <!-- README_GPTQ.md-use-from-python end -->
359
+
360
+ <!-- README_GPTQ.md-compatibility start -->
361
+ ## Compatibility
362
+
363
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
364
+
365
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility.
366
+
367
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
368
+ <!-- README_GPTQ.md-compatibility end -->
369
+
370
+ <!-- footer start -->
371
+ <!-- 200823 -->
372
+ ## Discord
373
+
374
+ For further support, and discussions on these models and AI in general, join us at:
375
+
376
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
377
+
378
+ ## Thanks, and how to contribute
379
+
380
+ Thanks to the [chirper.ai](https://chirper.ai) team!
381
+
382
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
383
+
384
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
385
+
386
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
387
+
388
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
389
+
390
+ * Patreon: https://patreon.com/TheBlokeAI
391
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
392
+
393
+ **Special thanks to**: Aemon Algiz.
394
+
395
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
396
+
397
+
398
+ Thank you to all my generous patrons and donaters!
399
+
400
+ And thank you again to a16z for their generous grant.
401
+
402
+ <!-- footer end -->
403
+
404
+ # Original model card: Feynman Innovations's Code 290K 13B
405
+
406
+
407
+
408
+ **Code-290k-13B**
409
+
410
+ Large Language Models (LLMs) are good with code generations. Sometimes they do make mistakes in code generation. How about if they can give detailed explanation along with the code.
411
+ This is what I have tried over here. The base Llama-2 model was used for training purpose. It is trained on around **290000** set of codes. Each set having 2 conversations.
412
+ Along with Python, Java, JavaScript, GO, C++, Rust, Ruby, Sql, MySql, R, Julia, Haskell, etc. code with detailed explanation is used for training purpose. It is built upon using my existing Datasets [Python-Code-23k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT) and [Code-74k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-74k-ShareGPT) .
413
+ This conversation is in Vicuna/ShareGPT format. Each set, along with code, has detailed explanation.
414
+
415
+ I have released the new data [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT) on which this Model is trained.
416
+
417
+ **Training:**
418
+
419
+ Entire dataset was trained on 4 x A100 80GB. For 3 epoch, training took 165 hours. DeepSpeed codebase was used for training purpose. This was trained on Llama-2 by Meta.
420
+
421
+
422
+ This is a full fine tuned model. Links for quantized models will be updated soon.
423
+
424
+
425
+ **GPTQ GGUF & AWQ**
426
+
427
+ GPTQ: TBA
428
+
429
+ GGUF: TBA
430
+
431
+ AWQ: TBA
432
+
433
+
434
+
435
+
436
+ **Example Prompt:**
437
+ ```
438
+ This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation.
439
+
440
+ Context
441
+ You are a helpful AI assistant.
442
+
443
+ USER: <prompt>
444
+ ASSISTANT:
445
+ ```
446
+
447
+ You can modify above Prompt as per your requirement. I have used ShareGPT/Vicuna format v1.1 .
448
+
449
+ I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.
450
+
451
+ Thank you for your love & support.
452
+
453
+ **Example Output**
454
+
455
+ Will update soon.