File size: 19,917 Bytes
a381c43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
---
base_model: akjindal53244/Arithmo-Mistral-7B
datasets:
- akjindal53244/Arithmo-Data
inference: false
language:
- en
license: apache-2.0
model_creator: Ashvini Kumar Jindal
model_name: Arithmo Mistral 7B
model_type: mistral
prompt_template: 'Question: {prompt}

  Answer:

  '
quantized_by: TheBloke
tags:
- Mathematical Reasoning
---
<!-- markdownlint-disable MD041 -->

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Arithmo Mistral 7B - AWQ
- Model creator: [Ashvini Kumar Jindal](https://huggingface.co/akjindal53244)
- Original model: [Arithmo Mistral 7B](https://huggingface.co/akjindal53244/Arithmo-Mistral-7B)

<!-- description start -->
## Description

This repo contains AWQ model files for [Ashvini Kumar Jindal's Arithmo Mistral 7B](https://huggingface.co/akjindal53244/Arithmo-Mistral-7B).


### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

It is supported by:

- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code

<!-- description end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Arithmo-Mistral-7B-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Arithmo-Mistral-7B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Arithmo-Mistral-7B-GGUF)
* [Ashvini Kumar Jindal's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/akjindal53244/Arithmo-Mistral-7B)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: QA

```
Question: {prompt}
Answer:

```

<!-- prompt-template end -->


<!-- README_AWQ.md-provided-files start -->
## Provided files, and AWQ parameters

For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.

Models are released as sharded safetensors files.

| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
| ------ | ---- | -- | ----------- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/Arithmo-Mistral-7B-AWQ/tree/main) | 4 | 128 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 4.15 GB

<!-- README_AWQ.md-provided-files end -->

<!-- README_AWQ.md-text-generation-webui start -->
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)

Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/Arithmo-Mistral-7B-AWQ`.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `Arithmo-Mistral-7B-AWQ`
7. Select **Loader: AutoAWQ**.
8. Click Load, and the model will load and is now ready for use.
9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
<!-- README_AWQ.md-text-generation-webui end -->

<!-- README_AWQ.md-use-from-vllm start -->
## Multi-user inference server: vLLM

Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).

- Please ensure you are using vLLM version 0.2 or later.
- When using vLLM as a server, pass the `--quantization awq` parameter.

For example:

```shell
python3 python -m vllm.entrypoints.api_server --model TheBloke/Arithmo-Mistral-7B-AWQ --quantization awq
```

- When using vLLM from Python code, again set `quantization=awq`.

For example:

```python
from vllm import LLM, SamplingParams

prompts = [
    "Tell me about AI",
    "Write a story about llamas",
    "What is 291 - 150?",
    "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
]
prompt_template=f'''Question: {prompt}
Answer:
'''

prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]

sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="TheBloke/Arithmo-Mistral-7B-AWQ", quantization="awq", dtype="auto")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
<!-- README_AWQ.md-use-from-vllm start -->

<!-- README_AWQ.md-use-from-tgi start -->
## Multi-user inference server: Hugging Face Text Generation Inference (TGI)

Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`

Example Docker parameters:

```shell
--model-id TheBloke/Arithmo-Mistral-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
```

Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):

```shell
pip3 install huggingface-hub
```

```python
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''Question: {prompt}
Answer:
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: ", response)
```
<!-- README_AWQ.md-use-from-tgi end -->

<!-- README_AWQ.md-use-from-python start -->
## Inference from Python code using AutoAWQ

### Install the AutoAWQ package

Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.1 or later.

```shell
pip3 install autoawq
```

If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:

```shell
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
```

### AutoAWQ example code

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

model_name_or_path = "TheBloke/Arithmo-Mistral-7B-AWQ"

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
# Load model
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
                                          trust_remote_code=False, safetensors=True)

prompt = "Tell me about AI"
prompt_template=f'''Question: {prompt}
Answer:
'''

print("*** Running model.generate:")

token_input = tokenizer(
    prompt_template,
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    token_input,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    max_new_tokens=512
)

# Get the tokens from the output, decode them, print them
token_output = generation_output[0]
text_output = tokenizer.decode(token_output)
print("LLM output: ", text_output)

"""
# Inference should be possible with transformers pipeline as well in future
# But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
from transformers import pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])
"""
```
<!-- README_AWQ.md-use-from-python end -->

<!-- README_AWQ.md-compatibility start -->
## Compatibility

The files provided are tested to work with:

- [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
- [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.

<!-- README_AWQ.md-compatibility end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: Ashvini Kumar Jindal's Arithmo Mistral 7B

# Model Card for Model ID

[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](CODE_LICENSE)
[![Model Weight License](https://img.shields.io/badge/Model%20Weights%20License-Apache_2.0-green.svg)](LICENSE)
[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/release/python-390/)

**P.S.:** Please reach out to [Ashvini Jindal](https://www.linkedin.com/in/ashvini-jindal-26653262/) if you would be interested in supporting compute need. We are looking for small-scale support so we'd appreciate any kind of help! :)

## Model Details

Arithmo-Mistral-7B is trained to reason and answer mathematical problems and is also capable of writing a Python program that upon execution prints answer to the question. We used [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base model and used QLoRA to fine-tune it on a single RTX 4090 GPU.

### Model Description

- **Project GitHub Page:** https://github.com/akjindal53244/Arithmo-Mistral-7B
- **Developed by:** [Ashvini Kumar Jindal](https://www.linkedin.com/in/ashvini-jindal-26653262/)
- **Funded by:** self-work
- **Model type:** fine-tuned
- **Language(s) (NLP):** English
- **Finetuned from model:** mistralai/Mistral-7B-v0.1

## Results

Arithmo-Mistral-7B outperforms existing 7B and 13B state-of-the-art Mathematical Reasoning models. Refer to [Comparing Arithmo-Mistral-7B with other LLM models](https://github.com/akjindal53244/Arithmo-Mistral-7B/tree/master#comparing-arithmo-mistral-7b-with-other-llm-models) section for more details.

<table>
    <thead>
        <tr>
            <th>Prompt Approach</th>
            <th>GSM8k</th>
            <th>MATH</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>Zero-Shot CoT</td>
            <td><b>74.7</b></td>
            <td><b>25.3</b></td>
        </tr>
        <tr>
            <td>Zero-Shot PoT</td>
            <td><b>71.2</b></td>
            <td>-</td>
        </tr>
    </tbody>
</table>

- **Zero-Shot CoT**: On providing a question as prompt, model generates reasoning steps to solve the question along with answer. We check if answer matches with ground-truth.
- **Zero-Shot PoT**: We prompt the model to generate a Python program for the given question. During inference, we execute the Python program generated by the model and check if the program output matches with ground-truth answer.


## Installation

```
pip install transformers >=4.34.0
pip install accelerate
pip install sentencepiece
pip install protobuf

# If you are GPU poor like me
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu

# If you have a GPU.
pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu118
pip install scipy
pip install bitsandbytes
```


## How to query the model

```
# Set `run_model_on_gpu` to `False` if you are running on CPU. Model will generate reasoning steps with answer for your question. If you want to generate Python program, uncomment line-69 that adds a Python prompt.
# This script automatically does formatting for you, so you just need to type question (eg: `What is 2+2?`) without any prefix like `Question:`, etc.**

$ python query_model.py
```
**Note:** Above script automatically does formatting for you, so you just need to type question (eg: `What is 2+2?`) without any prefix like `Question:`, etc. Checkout [query_model.py](https://github.com/akjindal53244/Arithmo-Mistral-7B/blob/master/query_model.py) for more details. <br><br>

##### Sample Input:
```
Question: There are total 10 children. I have to give 1 apple to first child, 2 apples to second child, 3 apples to third child, and so on. How many apples do I need?
```
##### Model Output:
```
Answer: The total number of apples needed is the sum of the first 10 positive integers.
This can be calculated using the formula for the sum of an arithmetic series:
\[S = \frac{n}{2}(a_1 + a_n),\]
where $S$ is the sum, $n$ is the number of terms, $a_1$ is the first term, and $a_n$ is the last term.
In this case, $n = 10$, $a_1 = 1$, and $a_n = 10$.
Plugging these values into the formula, we get:
\[S = \frac{10}{2}(1 + 10) = 5(11) = \boxed{55}.\]
The answer is: 55
```

Arithmo-Mistral-7B is trained with the following format:
#### CoT Format (generate reasoning steps with answer):
```
Question: <question>

Answer:
```

#### PoT Format (generate a python program):
```
Question: <question> <python_prompt>

Answer:
```
It will perform best if queried in this way with your own script.

## Comparing Arithmo-Mistral-7B with other LLM models.
Results for all models except `Arithmo-Mistral-7B` are taken from [MetaMath](https://github.com/meta-math/MetaMath/blob/main/README.MD) repository.

| Model               | GSM8k Pass@1 | MATH Pass@1 |
|---------------------|--------------|-------------|
| MPT-7B              | 6.8          | 3.0         |
| Falcon-7B           | 6.8          | 2.3         |
| LLaMA-1-7B          | 11.0         | 2.9         |
| LLaMA-2-7B          | 14.6         | 2.5         |
| MPT-30B             | 15.2         | 3.1         |
| LLaMA-1-13B         | 17.8         | 3.9         |
| GPT-Neo-2.7B        | 19.5         | --          |
| Falcon-40B          | 19.6         | 2.5         |
| Baichuan-chat-13B   | 23.9         | --          |
| Vicuna-v1.3-13B     | 27.6         | --          |
| LLaMA-2-13B         | 28.7         | 3.9         |
| InternLM-7B         | 31.2         | --          |
| ChatGLM-2-6B        | 32.4         | --          |
| GPT-J-6B            | 34.9         | --          |
| LLaMA-1-33B         | 35.6         | 3.9         |
| LLaMA-2-34B         | 42.2         | 6.24        |
| RFT-7B              | 50.3         | --          |
| LLaMA-1-65B         | 50.9         | 10.6        |
| Qwen-7B             | 51.6         | --          |
| WizardMath-7B       | 54.9         | 10.7        |
| LLaMA-2-70B         | 56.8         | 13.5        |
| WizardMath-13B      | 63.9         | 14.0        |
| MetaMath-7B         | 66.5         | 19.8        |
| MetaMath-13B        | 72.3         | 22.4        |
| 🔥 **Arithmo-Mistral-7B Zero-Shot PoT**  | **71.2** | --       |
| 🔥 **Arithmo-Mistral-7B Zero-Shot CoT**  | **74.7** | **25.3**       |
| WizardMath-70B      | **81.6**     | 22.7        |
| MetaMath-70B        | **82.3**     | **26.6**        |


If you are interested in reproducing the resullts, visit https://github.com/akjindal53244/Arithmo-Mistral-7B#reproducing-results section.