Thanish Batcha commited on
Commit
1706c64
·
1 Parent(s): 4a80d7e

Adding new files

Browse files
README.md ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ta
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - speech
11
+ - xlsr-fine-tuning-week
12
+ license: apache-2.0
13
+ model-index:
14
+ - name: thanish wav2vec2-large-xlsr-tamil
15
+ results:
16
+ - task:
17
+ name: Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: Common Voice ta
21
+ type: common_voice
22
+ args: ta
23
+ metrics:
24
+ - name: Test WER
25
+ type: wer
26
+ value: 100.00
27
+ ---
28
+
29
+ # Wav2Vec2-Large-XLSR-53-Tamil
30
+
31
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice), ... and ... dataset.
32
+ When using this model, make sure that your speech input is sampled at 16kHz.
33
+
34
+ ## Usage
35
+
36
+ The model can be used directly (without a language model) as follows:
37
+
38
+ ```python
39
+ import torch
40
+ import torchaudio
41
+ from datasets import load_dataset
42
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
43
+ test_dataset = load_dataset("common_voice", "{lang_id}", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
44
+ processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
45
+ model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
46
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
47
+ # Preprocessing the datasets.
48
+ # We need to read the aduio files as arrays
49
+ def speech_file_to_array_fn(batch):
50
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
51
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
52
+ \treturn batch
53
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
54
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
55
+ with torch.no_grad():
56
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
57
+ predicted_ids = torch.argmax(logits, dim=-1)
58
+ print("Prediction:", processor.batch_decode(predicted_ids))
59
+ print("Reference:", test_dataset["sentence"][:2])
60
+ ```
61
+
62
+
63
+ ## Evaluation
64
+
65
+ The model can be evaluated as follows on the Tamil test data of Common Voice.
66
+
67
+
68
+ ```python
69
+ import torch
70
+ import torchaudio
71
+ from datasets import load_dataset, load_metric
72
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
73
+ import re
74
+ test_dataset = load_dataset("common_voice", "{lang_id}", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
75
+ wer = load_metric("wer")
76
+ processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
77
+ model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
78
+ model.to("cuda")
79
+ chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' # TODO: adapt this list to include all special characters you removed from the data
80
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
81
+ # Preprocessing the datasets.
82
+ # We need to read the audio files as arrays
83
+ def speech_file_to_array_fn(batch):
84
+ \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
85
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
86
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
87
+ \treturn batch
88
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
89
+ # Preprocessing the datasets.
90
+ # We need to read the aduio files as arrays
91
+ def evaluate(batch):
92
+ \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
93
+ \twith torch.no_grad():
94
+ \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
95
+ \tpred_ids = torch.argmax(logits, dim=-1)
96
+ \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
97
+ \treturn batch
98
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
99
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
100
+ ```
101
+
102
+ **Test Result**: 100.00 %
103
+
104
+
105
+ ## Training
106
+
107
+ The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training.
108
+
109
+ The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
3
+ "activation_dropout": 0.1,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "Wav2Vec2ForCTC"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "conv_bias": true,
11
+ "conv_dim": [
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512
19
+ ],
20
+ "conv_kernel": [
21
+ 10,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 2,
27
+ 2
28
+ ],
29
+ "conv_stride": [
30
+ 5,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2
37
+ ],
38
+ "ctc_loss_reduction": "mean",
39
+ "ctc_zero_infinity": false,
40
+ "do_stable_layer_norm": true,
41
+ "eos_token_id": 2,
42
+ "feat_extract_activation": "gelu",
43
+ "feat_extract_dropout": 0.0,
44
+ "feat_extract_norm": "layer",
45
+ "feat_proj_dropout": 0.0,
46
+ "final_dropout": 0.0,
47
+ "gradient_checkpointing": true,
48
+ "hidden_act": "gelu",
49
+ "hidden_dropout": 0.1,
50
+ "hidden_size": 1024,
51
+ "initializer_range": 0.02,
52
+ "intermediate_size": 4096,
53
+ "layer_norm_eps": 1e-05,
54
+ "layerdrop": 0.1,
55
+ "mask_channel_length": 10,
56
+ "mask_channel_min_space": 1,
57
+ "mask_channel_other": 0.0,
58
+ "mask_channel_prob": 0.0,
59
+ "mask_channel_selection": "static",
60
+ "mask_feature_length": 10,
61
+ "mask_feature_prob": 0.0,
62
+ "mask_time_length": 10,
63
+ "mask_time_min_space": 1,
64
+ "mask_time_other": 0.0,
65
+ "mask_time_prob": 0.05,
66
+ "mask_time_selection": "static",
67
+ "model_type": "wav2vec2",
68
+ "num_attention_heads": 16,
69
+ "num_conv_pos_embedding_groups": 16,
70
+ "num_conv_pos_embeddings": 128,
71
+ "num_feat_extract_layers": 7,
72
+ "num_hidden_layers": 24,
73
+ "pad_token_id": 51,
74
+ "transformers_version": "4.4.2",
75
+ "vocab_size": 52
76
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_size": 1,
4
+ "padding_side": "right",
5
+ "padding_value": 0.0,
6
+ "return_attention_mask": true,
7
+ "sampling_rate": 16000
8
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dc0edfd6ed246e3087d4741461502c48cb859c5b74f59f4dfda4f885aaef308
3
+ size 1262142771
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
test.txt DELETED
File without changes
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ல": 0, "எ": 1, "ள": 2, "ே": 3, "ஈ": 4, "ொ": 5, "ஒ": 6, "ு": 7, "ஷ": 8, "ங": 9, "ஜ": 10, "த": 11, "ோ": 12, "ய": 13, "ம": 14, "ா": 15, "ச": 17, "வ": 18, "ூ": 19, "க": 20, "ஞ": 21, "்": 22, "ஓ": 23, "ஃ": 24, "ஊ": 25, "ஹ": 26, "ெ": 27, "’": 28, "ௌ": 29, "ட": 30, "‘": 31, "ஏ": 32, "ஐ": 33, "ப": 34, "ற": 35, "ர": 36, "இ": 37, "ந": 38, "ஔ": 39, "ன": 40, "ஸ": 41, "ண": 42, "ி": 43, "ை": 44, "உ": 45, "ீ": 46, "ழ": 47, "ஆ": 48, "அ": 49, "|": 16, "[UNK]": 50, "[PAD]": 51}