import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load the model and tokenizer model_name = "TerminatorPower/bert-news-classif-turkish" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) model.eval() # Load the reverse label mapping reverse_label_mapping = { 0: "turkiye", 1: "ekonomi", 2: "dunya", 3: "spor", 4: "magazin", 5: "guncel", 6: "genel", 7: "siyaset", 8: "saglik", 9: "kultur-sanat", 10: "teknoloji", 11: "yasam" } def predict(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=512) inputs = {key: value.to("cuda" if torch.cuda.is_available() else "cpu") for key, value in inputs.items()} model.to(inputs["input_ids"].device) with torch.no_grad(): outputs = model(**inputs) predictions = torch.argmax(outputs.logits, dim=1) predicted_label = reverse_label_mapping[predictions.item()] return predicted_label if __name__ == "__main__": text = input() print(f"Predicted label: {predict(text)}")