TerminatorPower
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,93 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
|
|
7 |
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
|
|
61 |
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
Use the code below to get started with the model.
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
[
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
108 |
|
109 |
-
#### Testing Data
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
|
189 |
-
|
|
|
|
|
|
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
|
|
194 |
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
## Model Card Contact
|
198 |
|
199 |
-
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- bert
|
5 |
+
- berturk
|
6 |
+
language:
|
7 |
+
- tr
|
8 |
+
pipeline_tag: text-classification
|
9 |
---
|
10 |
|
11 |
# Model Card for Model ID
|
12 |
+
Turkish news classifier.
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
### Model Description
|
16 |
|
17 |
+
11 classes are present:
|
18 |
+
'turkiye': 0, 'ekonomi': 1, 'dunya': 2, 'spor': 3, 'magazin': 4, 'guncel': 5, 'genel': 6, 'siyaset': 7, 'saglik': 8, 'kultur-sanat': 9, 'teknoloji': 10, 'yasam': 11
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
The model is a finetuned bert-base-multilingual-uncased model.
|
21 |
+
The model is not originally a classifier model, so classifier weights were trained completely using the turkish dataset. 🤗
|
22 |
|
23 |
+
Eval loss: train_loss': 0.8327703781731708
|
24 |
+
Train loss:0.8896290063858032
|
25 |
+
Eval train split: 0.2/0.8
|
26 |
|
27 |
+
- **Developed by:** [Ezel Bayraktar]
|
28 |
+
- **Model type:** [Classifier]
|
29 |
+
- **Language(s) (NLP):** [Turkish]
|
30 |
+
- **License:** [MIT License]
|
31 |
+
- **Finetuned from model [optional]:** [bert-base-multilingual-uncased ]
|
32 |
|
|
|
|
|
|
|
33 |
|
34 |
## How to Get Started with the Model
|
35 |
|
36 |
Use the code below to get started with the model.
|
37 |
|
38 |
+
import torch
|
39 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
40 |
+
|
41 |
+
model_name = "TerminatorPower/bert-news-classif-turkish"
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
44 |
+
model.eval()
|
45 |
+
|
46 |
+
reverse_label_mapping = {
|
47 |
+
0: "label_0",
|
48 |
+
1: "label_1",
|
49 |
+
2: "label_2",
|
50 |
+
3: "label_3",
|
51 |
+
4: "label_4",
|
52 |
+
5: "label_5",
|
53 |
+
6: "label_6",
|
54 |
+
7: "label_7",
|
55 |
+
8: "label_8",
|
56 |
+
9: "label_9",
|
57 |
+
10: "label_10",
|
58 |
+
11: "label_11",
|
59 |
+
12: "siyaset" # Example: Map index 12 back to "siyaset"
|
60 |
+
}
|
61 |
+
|
62 |
+
def predict(text):
|
63 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
|
64 |
+
inputs = {key: value.to("cuda" if torch.cuda.is_available() else "cpu") for key, value in inputs.items()}
|
65 |
+
model.to(inputs["input_ids"].device)
|
66 |
+
with torch.no_grad():
|
67 |
+
outputs = model(**inputs)
|
68 |
+
predictions = torch.argmax(outputs.logits, dim=1)
|
69 |
+
predicted_label = reverse_label_mapping[predictions.item()]
|
70 |
+
return predicted_label
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
text = "Some example news text"
|
74 |
+
print(f"Predicted label: {predict(text)}")
|
75 |
|
|
|
76 |
|
77 |
+
## Training Details
|
78 |
+
I used rtx 3060 12gb card to tain the training took 245 minutes in total
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
learning_rate=5e-5,
|
81 |
+
per_device_train_batch_size=20,
|
82 |
+
per_device_eval_batch_size=20,
|
83 |
+
num_train_epochs=7,
|
84 |
|
85 |
+
### Training Data
|
86 |
|
87 |
+
I used the kemik 42bin haber data set which you can access from this link
|
88 |
+
http://www.kemik.yildiz.edu.tr/veri_kumelerimiz.html
|
89 |
|
|
|
90 |
|
91 |
## Model Card Contact
|
92 |
|
93 |