TerminatorPower commited on
Commit
ed9687a
·
verified ·
1 Parent(s): cb6b224

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -172
README.md CHANGED
@@ -1,199 +1,93 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
61
 
62
- [More Information Needed]
 
 
63
 
64
- ### Recommendations
 
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
 
 
 
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - bert
5
+ - berturk
6
+ language:
7
+ - tr
8
+ pipeline_tag: text-classification
9
  ---
10
 
11
  # Model Card for Model ID
12
+ Turkish news classifier.
13
 
 
 
 
 
 
14
 
15
  ### Model Description
16
 
17
+ 11 classes are present:
18
+ 'turkiye': 0, 'ekonomi': 1, 'dunya': 2, 'spor': 3, 'magazin': 4, 'guncel': 5, 'genel': 6, 'siyaset': 7, 'saglik': 8, 'kultur-sanat': 9, 'teknoloji': 10, 'yasam': 11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
+ The model is a finetuned bert-base-multilingual-uncased model.
21
+ The model is not originally a classifier model, so classifier weights were trained completely using the turkish dataset. 🤗
22
 
23
+ Eval loss: train_loss': 0.8327703781731708
24
+ Train loss:0.8896290063858032
25
+ Eval train split: 0.2/0.8
26
 
27
+ - **Developed by:** [Ezel Bayraktar]
28
+ - **Model type:** [Classifier]
29
+ - **Language(s) (NLP):** [Turkish]
30
+ - **License:** [MIT License]
31
+ - **Finetuned from model [optional]:** [bert-base-multilingual-uncased ]
32
 
 
 
 
33
 
34
  ## How to Get Started with the Model
35
 
36
  Use the code below to get started with the model.
37
 
38
+ import torch
39
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
40
+
41
+ model_name = "TerminatorPower/bert-news-classif-turkish"
42
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
43
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
44
+ model.eval()
45
+
46
+ reverse_label_mapping = {
47
+ 0: "label_0",
48
+ 1: "label_1",
49
+ 2: "label_2",
50
+ 3: "label_3",
51
+ 4: "label_4",
52
+ 5: "label_5",
53
+ 6: "label_6",
54
+ 7: "label_7",
55
+ 8: "label_8",
56
+ 9: "label_9",
57
+ 10: "label_10",
58
+ 11: "label_11",
59
+ 12: "siyaset" # Example: Map index 12 back to "siyaset"
60
+ }
61
+
62
+ def predict(text):
63
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
64
+ inputs = {key: value.to("cuda" if torch.cuda.is_available() else "cpu") for key, value in inputs.items()}
65
+ model.to(inputs["input_ids"].device)
66
+ with torch.no_grad():
67
+ outputs = model(**inputs)
68
+ predictions = torch.argmax(outputs.logits, dim=1)
69
+ predicted_label = reverse_label_mapping[predictions.item()]
70
+ return predicted_label
71
+
72
+ if __name__ == "__main__":
73
+ text = "Some example news text"
74
+ print(f"Predicted label: {predict(text)}")
75
 
 
76
 
77
+ ## Training Details
78
+ I used rtx 3060 12gb card to tain the training took 245 minutes in total
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
+ learning_rate=5e-5,
81
+ per_device_train_batch_size=20,
82
+ per_device_eval_batch_size=20,
83
+ num_train_epochs=7,
84
 
85
+ ### Training Data
86
 
87
+ I used the kemik 42bin haber data set which you can access from this link
88
+ http://www.kemik.yildiz.edu.tr/veri_kumelerimiz.html
89
 
 
90
 
91
  ## Model Card Contact
92
 
93