TerminatorPower commited on
Commit
d308a5c
·
verified ·
1 Parent(s): 218f32e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -46
README.md CHANGED
@@ -28,52 +28,7 @@ Eval train split: 0.2/0.8
28
  - **Model type:** [Classifier]
29
  - **Language(s) (NLP):** [Turkish]
30
  - **License:** [MIT License]
31
- - **Finetuned from model [optional]:** [bert-base-multilingual-uncased ]
32
-
33
-
34
- ## How to Get Started with the Model
35
-
36
- Use the code below to get started with the model.
37
-
38
- import torch
39
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
40
-
41
- model_name = "TerminatorPower/bert-news-classif-turkish"
42
- tokenizer = AutoTokenizer.from_pretrained(model_name)
43
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
44
- model.eval()
45
-
46
- reverse_label_mapping = {
47
- 0: "label_0",
48
- 1: "label_1",
49
- 2: "label_2",
50
- 3: "label_3",
51
- 4: "label_4",
52
- 5: "label_5",
53
- 6: "label_6",
54
- 7: "label_7",
55
- 8: "label_8",
56
- 9: "label_9",
57
- 10: "label_10",
58
- 11: "label_11",
59
- 12: "siyaset" # Example: Map index 12 back to "siyaset"
60
- }
61
-
62
- def predict(text):
63
- inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
64
- inputs = {key: value.to("cuda" if torch.cuda.is_available() else "cpu") for key, value in inputs.items()}
65
- model.to(inputs["input_ids"].device)
66
- with torch.no_grad():
67
- outputs = model(**inputs)
68
- predictions = torch.argmax(outputs.logits, dim=1)
69
- predicted_label = reverse_label_mapping[predictions.item()]
70
- return predicted_label
71
-
72
- if __name__ == "__main__":
73
- text = "Some example news text"
74
- print(f"Predicted label: {predict(text)}")
75
-
76
-
77
  ## Training Details
78
  I used rtx 3060 12gb card to tain the training took 245 minutes in total
79
 
 
28
  - **Model type:** [Classifier]
29
  - **Language(s) (NLP):** [Turkish]
30
  - **License:** [MIT License]
31
+ - **Finetuned from model [optional]:** [bert-base-multilingual-uncased]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ## Training Details
33
  I used rtx 3060 12gb card to tain the training took 245 minutes in total
34