File size: 11,238 Bytes
e2c1022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# coding=utf-8
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Jamba model configuration"""
import math
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class JambaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`JambaModel`]. It is used to instantiate a
Jamba model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the jamba-small architecture.
[ai21labs/jamba-small](https://huggingface.co/ai21labs/Jamba-v0.1)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 65536):
Vocabulary size of the Jamba model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`JambaModel`]
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
model has a output word embedding layer.
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
calc_logits_for_entire_prompt (`bool`, *optional*, defaults to `False`):
Whether or not to calculate logits for entire prompt during generation. If `False`, only the logits of the
last prompt token will be calculated, which are the only logits needed for generation. For long sequences,
the logits for the entire sequence may use a lot of memory so setting `calc_logits_for_entire_prompt=False`
will reduce memory footprint significantly.
Note: some generation features may not be available if this is set to `False`.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabling this will also
allow the model to output the auxiliary loss. See [here]() for more details
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
pad_token_id (`int`, *optional*, defaults to 0):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
sliding_window (`int`, *optional*):
Sliding window attention window size. If not specified, will default to `None`.
n_ctx (`int`, *optional*, defaults to 262144):
This value doesn't have any real effect. The maximum sequence length that this model is intended to be
used with. It can be used with longer sequences, but performance may degrade.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
num_experts_per_tok (`int`, *optional*, defaults to 2):
The number of experts to root per-token, can be also interpreted as the `top-p` routing
parameter
num_experts (`int`, *optional*, defaults to 16):
Number of experts per Sparse MLP layer.
expert_layer_period (`int`, *optional*, defaults to 2):
Once in this many layers, we will have an expert layer
expert_layer_offset (`int`, *optional*, defaults to 1):
The first layer index that contains an expert mlp layer
attn_layer_period (`int`, *optional*, defaults to 8):
Once in this many layers, we will have a vanilla attention layer
attn_layer_offset (`int`, *optional*, defaults to 4):
The first layer index that contains a vanilla attention mlp layer
use_mamba_kernels (`bool`, *optional*, defaults to `True`):
Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and
`causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if
`True` and kernels are not available
mamba_d_state (`int`, *optional*, defaults to 16):
The dimension the mamba state space latents
mamba_d_conv (`int`, *optional*, defaults to 4):
The size of the mamba convolution kernel
mamba_expand (`int`, *optional*, defaults to 2):
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
Rank of the the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
mamba_conv_bias (`bool`, *optional*, defaults to `True`):
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
mamba_proj_bias (`bool`, *optional*, defaults to `False`):
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block
mamba_inner_layernorms (`bool`, *optional*, defaults to `True`):
Flag indicating whether or not to apply layernorms to internal mamba activations
"""
model_type = "jamba"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=65536,
tie_word_embeddings=False,
hidden_size=4096,
intermediate_size=14336,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8,
hidden_act="silu",
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
calc_logits_for_entire_prompt=False,
output_router_logits=False,
router_aux_loss_coef=0.001,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
sliding_window=None,
n_ctx=262144,
attention_dropout=0.0,
num_experts_per_tok=2,
num_experts=16,
expert_layer_period=2,
expert_layer_offset=1,
attn_layer_period=8,
attn_layer_offset=4,
use_mamba_kernels=True,
mamba_d_state=16,
mamba_d_conv=4,
mamba_expand=2,
mamba_dt_rank="auto",
mamba_conv_bias=True,
mamba_proj_bias=False,
mamba_inner_layernorms=True,
**kwargs,
):
self.vocab_size = vocab_size
self.tie_word_embeddings = tie_word_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.sliding_window = sliding_window
self.n_ctx = n_ctx
self.attention_dropout = attention_dropout
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.calc_logits_for_entire_prompt = calc_logits_for_entire_prompt
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.expert_layer_period = expert_layer_period
self.expert_layer_offset = expert_layer_offset
self.attn_layer_period = attn_layer_period
self.attn_layer_offset = attn_layer_offset
self.use_mamba_kernels = use_mamba_kernels
self.mamba_d_state = mamba_d_state
self.mamba_d_conv = mamba_d_conv
self.mamba_expand = mamba_expand
self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank
self.mamba_conv_bias = mamba_conv_bias
self.mamba_proj_bias = mamba_proj_bias
self.mamba_inner_layernorms = mamba_inner_layernorms
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
|