File size: 1,790 Bytes
38fabe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: bigscience/mt0-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt0-small-query-extraction-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt0-small-query-extraction-2

This model is a fine-tuned version of [bigscience/mt0-small](https://huggingface.co/bigscience/mt0-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Rouge1: 67.4541
- Rouge2: 63.5776
- Rougel: 67.4563
- Rougelsum: 67.4555
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.0025        | 1.0   | 5000  | 0.0000          | 67.4541 | 63.5776 | 67.4563 | 67.4555   | 19.0    |
| 0.0009        | 2.0   | 10000 | 0.0000          | 67.4541 | 63.5776 | 67.4563 | 67.4555   | 19.0    |
| 0.0004        | 3.0   | 15000 | 0.0000          | 67.4541 | 63.5776 | 67.4563 | 67.4555   | 19.0    |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1