File size: 3,133 Bytes
ac8b592 434f5fa 401d90b 434f5fa b1a567f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: mit
---
Project Organization
------------
βββ LICENSE
βββ Makefile <- Makefile with commands like `make dirs` or `make clean`
βββ README.md <- The top-level README for developers using this project.
βββ data
βΒ Β βββ processed <- The final, canonical data sets for modeling.
βΒ Β βββ raw <- The original, immutable data dump
β
βββ models <- Trained and serialized models, model predictions, or model summaries
β
βββ notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
β the creator's initials, and a short `-` delimited description, e.g.
β `1.0-jqp-initial-data-exploration`.
βββ references <- Data dictionaries, manuals, and all other explanatory materials.
βββ reports <- Generated analysis as HTML, PDF, LaTeX, etc.
βΒ Β βββ figures <- Generated graphics and figures to be used in reporting
βΒ Β βββ metrics.txt <- Relevant metrics after evaluating the model.
βΒ Β βββ training_metrics.txt <- Relevant metrics from training the model.
β
βββ requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
β generated with `pip freeze > requirements.txt`
β
βββ setup.py <- makes project pip installable (pip install -e .) so src can be imported
βββ src <- Source code for use in this project.
βΒ Β βββ __init__.py <- Makes src a Python module
β β
βΒ Β βββ data <- Scripts to download or generate data
βΒ Β βΒ Β βββ great_expectations <- Folder containing data integrity check files
βΒ Β βΒ Β βββ make_dataset.py
βΒ Β βΒ Β βββ data_validation.py <- Script to run data integrity checks
β β
βΒ Β βββ models <- Scripts to train models and then use trained models to make
β β β predictions
βΒ Β βΒ Β βββ predict_model.py
βΒ Β βΒ Β βββ train_model.py
β β
βΒ Β βββ visualization <- Scripts to create exploratory and results oriented visualizations
βΒ Β βββ visualize.py
β
βββ .pre-commit-config.yaml <- pre-commit hooks file with selected hooks for the projects.
βββ dvc.lock <- constructs the ML pipeline with defined stages.
βββ dvc.yaml <- Traing a model on the processed data.
--------
<p><small>Project based on the <a target="_blank" href="https://drivendata.github.io/cookiecutter-data-science/">cookiecutter data science project template</a>. #cookiecutterdatascience</small></p>
---
To create a project like this, just go to https://dagshub.com/repo/create and select the **Cookiecutter DVC** project template.
Made with πΆ by [DAGsHub](https://dagshub.com/).
|