File size: 3,133 Bytes
ac8b592
 
 
434f5fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401d90b
434f5fa
 
 
b1a567f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: mit
---

Project Organization
------------

    β”œβ”€β”€ LICENSE
    β”œβ”€β”€ Makefile           <- Makefile with commands like `make dirs` or `make clean`
    β”œβ”€β”€ README.md          <- The top-level README for developers using this project.
    β”œβ”€β”€ data
    β”‚Β Β  β”œβ”€β”€ processed      <- The final, canonical data sets for modeling.
    β”‚Β Β  └── raw            <- The original, immutable data dump
    β”‚
    β”œβ”€β”€ models             <- Trained and serialized models, model predictions, or model summaries
    β”‚
    β”œβ”€β”€ notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
    β”‚                         the creator's initials, and a short `-` delimited description, e.g.
    β”‚                         `1.0-jqp-initial-data-exploration`.
    β”œβ”€β”€ references         <- Data dictionaries, manuals, and all other explanatory materials.
    β”œβ”€β”€ reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
    β”‚Β Β  └── figures        <- Generated graphics and figures to be used in reporting
    β”‚Β Β  └── metrics.txt    <- Relevant metrics after evaluating the model.
    β”‚Β Β  └── training_metrics.txt    <- Relevant metrics from training the model.
    β”‚
    β”œβ”€β”€ requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
    β”‚                         generated with `pip freeze > requirements.txt`
    β”‚
    β”œβ”€β”€ setup.py           <- makes project pip installable (pip install -e .) so src can be imported
    β”œβ”€β”€ src                <- Source code for use in this project.
    β”‚Β Β  β”œβ”€β”€ __init__.py    <- Makes src a Python module
    β”‚   β”‚
    β”‚Β Β  β”œβ”€β”€ data           <- Scripts to download or generate data
    β”‚Β Β  β”‚Β Β  β”œβ”€β”€ great_expectations  <- Folder containing data integrity check files
    β”‚Β Β  β”‚Β Β  β”œβ”€β”€ make_dataset.py
    β”‚Β Β  β”‚Β Β  └── data_validation.py  <- Script to run data integrity checks
    β”‚   β”‚
    β”‚Β Β  β”œβ”€β”€ models         <- Scripts to train models and then use trained models to make
    β”‚   β”‚   β”‚                 predictions
    β”‚Β Β  β”‚Β Β  β”œβ”€β”€ predict_model.py
    β”‚Β Β  β”‚Β Β  └── train_model.py
    β”‚   β”‚
    β”‚Β Β  └── visualization  <- Scripts to create exploratory and results oriented visualizations
    β”‚Β Β      └── visualize.py
    β”‚
    β”œβ”€β”€ .pre-commit-config.yaml  <- pre-commit hooks file with selected hooks for the projects.
    β”œβ”€β”€ dvc.lock           <- constructs the ML pipeline with defined stages.
    └── dvc.yaml           <- Traing a model on the processed data.


--------

<p><small>Project based on the <a target="_blank" href="https://drivendata.github.io/cookiecutter-data-science/">cookiecutter data science project template</a>. #cookiecutterdatascience</small></p>


---

To create a project like this, just go to https://dagshub.com/repo/create and select the **Cookiecutter DVC** project template.

Made with 🐢 by [DAGsHub](https://dagshub.com/).