wenhu commited on
Commit
e6dc520
·
verified ·
1 Parent(s): 3985bc7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -21
README.md CHANGED
@@ -11,42 +11,43 @@ pipeline_tag: visual-question-answering
11
  ---
12
 
13
 
14
- [📃Paper] | [🌐Website](https://tiger-ai-lab.github.io/MantisScore/) | [💻Github](https://github.com/TIGER-AI-Lab/MantisScore) | [🛢️Datasets](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback) | [🤗Model](https://huggingface.co/TIGER-Lab/MantisScore) | [🤗Model-variant](https://huggingface.co/TIGER-Lab/MantisScore-anno-only) | [🤗Demo](https://huggingface.co/spaces/Mantis-VL/MantisScore)
15
 
16
 
17
- ![MantisScore](https://tiger-ai-lab.github.io/MantisScore/static/images/teaser.png)
18
 
19
  ## Introduction
20
- - MantisScore is a video quality evaluation model, taking [Mantis-8B-Idefics2](https://huggingface.co/TIGER-Lab/Mantis-8B-Idefics2) as base-model
21
  and trained on [VideoFeedback](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback),
22
  a large video evaluation dataset with multi-aspect human scores.
23
 
24
- - MantisScore can reach 75+ Spearman correlation with humans on VideoEval-test, surpassing all the MLLM-prompting methods and feature-based metrics.
25
 
26
- - MantisScore also beat the best baselines on other three benchmarks EvalCrafter, GenAI-Bench and VBench, showing high alignment with human evaluations.
27
 
28
- - **This is the regression version of MantisScore**
29
 
30
  ## Evaluation Results
31
 
32
- We test our video evaluation model MantisScore on VideoEval-test, EvalCrafter, GenAI-Bench and VBench.
33
  For the first two benchmarks, we take Spearman corrleation between model's output and human ratings
34
  averaged among all the evaluation aspects as indicator.
35
  For GenAI-Bench and VBench, which include human preference data among two or more videos,
36
  we employ the model's output to predict preferences and use pairwise accuracy as the performance indicator.
37
 
38
- Moreover, we use [MantisScore](https://huggingface.co/TIGER-Lab/MantisScore) trained on VideoFeedback dataset
39
- for VideoFeedback-test set, while for other three benchmarks, we use
40
- [MantisScore-anno-only](https://huggingface.co/TIGER-Lab/MantisScore-anno-only) variant trained on VideoFeedback dataset
41
- with real videos excluded.
 
42
 
43
  The evaluation results are shown below:
44
 
45
 
46
  | metric | Final Avg Score | VideoFeedback-test | EvalCrafter | GenAI-Bench | VBench |
47
  |:-----------------:|:--------------:|:--------------:|:-----------:|:-----------:|:----------:|
48
- | MantisScore (reg) | **69.6** | 75.7 | **51.1** | **78.5** | **73.0** |
49
- | MantisScore (gen) | 55.6 | **77.1** | 27.6 | 59.0 | 58.7 |
50
  | Gemini-1.5-Pro | <u>39.7</u> | 22.1 | 22.9 | 60.9 | 52.9 |
51
  | Gemini-1.5-Flash | 39.4 | 20.8 | 17.3 | <u>67.1</u> | 52.3 |
52
  | GPT-4o | 38.9 | <u>23.1</u> | 28.7 | 52.0 | 51.7 |
@@ -67,20 +68,20 @@ The evaluation results are shown below:
67
  | CogVLM | - | - | - | - | - |
68
  | OpenFlamingo | - | - | - | - | - | -->
69
 
70
- The best in MantisScore series is in bold and the best in baselines is underlined.
71
  <!-- "-" means the answer of MLLM is meaningless or in wrong format. -->
72
 
73
  ## Usage
74
  ### Installation
75
  ```
76
- pip install git+https://github.com/TIGER-AI-Lab/MantisScore.git
77
  # or
78
  # pip install mantis-vl
79
  ```
80
 
81
  ### Inference
82
  ```
83
- cd MantisScore/examples
84
  ```
85
 
86
  ```python
@@ -133,7 +134,7 @@ For this video, the text prompt is "{text_prompt}",
133
  all the frames of video are as follows:
134
  """
135
 
136
- model_name="TIGER-Lab/MantisScore"
137
  video_path="video1.mp4"
138
  video_prompt="Near the Elephant Gate village, they approach the haunted house at night. Rajiv feels anxious, but Bhavesh encourages him. As they reach the house, a mysterious sound in the air adds to the suspense."
139
 
@@ -187,15 +188,15 @@ text-to-video alignment, factual consistency, respectively
187
  ```
188
 
189
  ### Training
190
- see [MantisScore/training](https://github.com/TIGER-AI-Lab/MantisScore/tree/main/training) for details
191
 
192
  ### Evaluation
193
- see [MantisScore/benchmark](https://github.com/TIGER-AI-Lab/MantisScore/tree/main/benchmark) for details
194
 
195
  ## Citation
196
  ```bibtex
197
- @article{he2024mantisscore,
198
- title = {MantisScore: Building Automatic Metrics to Simulate Fine-grained Human Feedback for Video Generation},
199
  author = {He, Xuan and Jiang, Dongfu and Zhang, Ge and Ku, Max and Soni, Achint and Siu, Sherman and Chen, Haonan and Chandra, Abhranil and Jiang, Ziyan and Arulraj, Aaran and Wang, Kai and Do, Quy Duc and Ni, Yuansheng and Lyu, Bohan and Narsupalli, Yaswanth and Fan, Rongqi and Lyu, Zhiheng and Lin, Yuchen and Chen, Wenhu},
200
  journal = {ArXiv},
201
  year = {2024},
 
11
  ---
12
 
13
 
14
+ [📃Paper](https://arxiv.org/abs/2406.15252) | [🌐Website](https://tiger-ai-lab.github.io/VideoScore/) | [💻Github](https://github.com/TIGER-AI-Lab/VideoScore) | [🛢️Datasets](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback) | [🤗Model](https://huggingface.co/TIGER-Lab/VideoScore) | [🤗Demo](https://huggingface.co/spaces/TIGER-Lab/VideoScore)
15
 
16
 
17
+ ![VideoScore](https://tiger-ai-lab.github.io/VideoScore/static/images/teaser.png)
18
 
19
  ## Introduction
20
+ - VideoScore is a video quality evaluation model, taking [Mantis-8B-Idefics2](https://huggingface.co/TIGER-Lab/Mantis-8B-Idefics2) as base-model
21
  and trained on [VideoFeedback](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback),
22
  a large video evaluation dataset with multi-aspect human scores.
23
 
24
+ - VideoScore can reach 75+ Spearman correlation with humans on VideoEval-test, surpassing all the MLLM-prompting methods and feature-based metrics.
25
 
26
+ - VideoScore also beat the best baselines on other three benchmarks EvalCrafter, GenAI-Bench and VBench, showing high alignment with human evaluations.
27
 
28
+ - **This is the regression version of VideoScore**
29
 
30
  ## Evaluation Results
31
 
32
+ We test our video evaluation model VideoScore on VideoEval-test, EvalCrafter, GenAI-Bench and VBench.
33
  For the first two benchmarks, we take Spearman corrleation between model's output and human ratings
34
  averaged among all the evaluation aspects as indicator.
35
  For GenAI-Bench and VBench, which include human preference data among two or more videos,
36
  we employ the model's output to predict preferences and use pairwise accuracy as the performance indicator.
37
 
38
+ - We use [VideoScore](https://huggingface.co/TIGER-Lab/VideoScore) trained on the entire VideoFeedback dataset
39
+ for VideoFeedback-test set, while for other three benchmarks.
40
+
41
+ - We use [VideoScore-anno-only](https://huggingface.co/TIGER-Lab/VideoScore-anno-only) trained on VideoFeedback dataset
42
+ excluding the real videos.
43
 
44
  The evaluation results are shown below:
45
 
46
 
47
  | metric | Final Avg Score | VideoFeedback-test | EvalCrafter | GenAI-Bench | VBench |
48
  |:-----------------:|:--------------:|:--------------:|:-----------:|:-----------:|:----------:|
49
+ | VideoScore (reg) | **69.6** | 75.7 | **51.1** | **78.5** | **73.0** |
50
+ | VideoScore (gen) | 55.6 | **77.1** | 27.6 | 59.0 | 58.7 |
51
  | Gemini-1.5-Pro | <u>39.7</u> | 22.1 | 22.9 | 60.9 | 52.9 |
52
  | Gemini-1.5-Flash | 39.4 | 20.8 | 17.3 | <u>67.1</u> | 52.3 |
53
  | GPT-4o | 38.9 | <u>23.1</u> | 28.7 | 52.0 | 51.7 |
 
68
  | CogVLM | - | - | - | - | - |
69
  | OpenFlamingo | - | - | - | - | - | -->
70
 
71
+ The best in VideoScore series is in bold and the best in baselines is underlined.
72
  <!-- "-" means the answer of MLLM is meaningless or in wrong format. -->
73
 
74
  ## Usage
75
  ### Installation
76
  ```
77
+ pip install git+https://github.com/TIGER-AI-Lab/VideoScore.git
78
  # or
79
  # pip install mantis-vl
80
  ```
81
 
82
  ### Inference
83
  ```
84
+ cd VideoScore/examples
85
  ```
86
 
87
  ```python
 
134
  all the frames of video are as follows:
135
  """
136
 
137
+ model_name="TIGER-Lab/VideoScore"
138
  video_path="video1.mp4"
139
  video_prompt="Near the Elephant Gate village, they approach the haunted house at night. Rajiv feels anxious, but Bhavesh encourages him. As they reach the house, a mysterious sound in the air adds to the suspense."
140
 
 
188
  ```
189
 
190
  ### Training
191
+ see [VideoScore/training](https://github.com/TIGER-AI-Lab/VideoScore/tree/main/training) for details
192
 
193
  ### Evaluation
194
+ see [VideoScore/benchmark](https://github.com/TIGER-AI-Lab/VideoScore/tree/main/benchmark) for details
195
 
196
  ## Citation
197
  ```bibtex
198
+ @article{he2024videoscore,
199
+ title = {VideoScore: Building Automatic Metrics to Simulate Fine-grained Human Feedback for Video Generation},
200
  author = {He, Xuan and Jiang, Dongfu and Zhang, Ge and Ku, Max and Soni, Achint and Siu, Sherman and Chen, Haonan and Chandra, Abhranil and Jiang, Ziyan and Arulraj, Aaran and Wang, Kai and Do, Quy Duc and Ni, Yuansheng and Lyu, Bohan and Narsupalli, Yaswanth and Fan, Rongqi and Lyu, Zhiheng and Lin, Yuchen and Chen, Wenhu},
201
  journal = {ArXiv},
202
  year = {2024},