Update README.md
Browse files
README.md
CHANGED
@@ -19,7 +19,52 @@ pipeline_tag: visual-question-answering
|
|
19 |
![MantisScore](https://tiger-ai-lab.github.io/MantisScore/static/images/teaser.png)
|
20 |
|
21 |
## Introduction
|
22 |
-
- MantisScore is a video quality evaluation model,
|
|
|
23 |
a large video evaluation dataset with multi-aspect human scores.
|
24 |
|
25 |
-
- MantisScore
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
![MantisScore](https://tiger-ai-lab.github.io/MantisScore/static/images/teaser.png)
|
20 |
|
21 |
## Introduction
|
22 |
+
- MantisScore is a video quality evaluation model, taking [Mantis-8B-Idefics2](https://huggingface.co/TIGER-Lab/Mantis-8B-Idefics2) as base-model
|
23 |
+
and trained on [VideoEval](https://huggingface.co/datasets/TIGER-Lab/VideoEval),
|
24 |
a large video evaluation dataset with multi-aspect human scores.
|
25 |
|
26 |
+
- MantisScore can reach 75+ Spearman correlation with humans on VideoEval-test, surpassing all the MLLM-prompting methods and feature-based metrics.
|
27 |
+
|
28 |
+
- MantisScore also beat the best baselines on other three benchmarks EvalCrafter, GenAI-Bench and VBench, showing high alignment with human evaluations.
|
29 |
+
|
30 |
+
## Performance
|
31 |
+
### Evaluation Results on 4 benchmarks.
|
32 |
+
|
33 |
+
We test our video evaluation model MantisScore on VideoEval-test, EvalCrafter, GenAI-Bench and VBench.
|
34 |
+
For the first two benchmarks, we take Spearman corrleation between model's output and human ratings
|
35 |
+
averaged among all the evaluation aspects as indicator.
|
36 |
+
For GenAI-Bench and VBench, which include human preference data among two or more videos,
|
37 |
+
we employ the model's output to predict preferences and use pairwise accuracy as the performance indicator.
|
38 |
+
| metric | Final Sum Score | VideoEval-test | EvalCrafter | GenAI-Bench | VBench |
|
39 |
+
|------------------|----------------:|---------------:|------------:|-------------|--------|
|
40 |
+
| MantisScore | | | | | |
|
41 |
+
| Gemini-1.5-Pro | 158.8 | 22.1 | 22.9 | 60.9 | 52.9 |
|
42 |
+
| Gemini-1.5-Flash | 157.5 | 20.8 | 17.3 | 67.1 | 52.3 |
|
43 |
+
| GPT-4o | 155.4 | 23.1 | 28.7 | 52.0 | 51.7 |
|
44 |
+
| CLIP-sim | 126.8 | 8.9 | 36.2 | 34.2 | 47.4 |
|
45 |
+
| DINO-sim | 121.3 | 7.5 | 32.1 | 38.5 | 43.3 |
|
46 |
+
| SSIM-sim | 118.0 | 13.4 | 26.9 | 34.1 | 43.5 |
|
47 |
+
| CLIP-Score | 114.4 | -7.2 | 21.7 | 45.0 | 54.9 |
|
48 |
+
| LLaVA-1.5-7B | 108.3 | 8.5 | 10.5 | 49.9 | 39.4 |
|
49 |
+
| LLaVA-1.6-7B | 93.3 | -3.1 | 13.2 | 44.5 | 38.7 |
|
50 |
+
| X-CLIP-Score | 92.9 | -1.9 | 13.3 | 41.4 | 40.1 |
|
51 |
+
| PIQE | 78.3 | -10.1 | -1.2 | 34.5 | 55.1 |
|
52 |
+
| BRISQUE | 75.9 | -20.3 | 3.9 | 38.5 | 53.7 |
|
53 |
+
| SSIM-dyn | 42.5 | -5.5 | -17.0 | 28.4 | 36.5 |
|
54 |
+
| MES-dyn | 36.7 | -12.9 | -26.4 | 31.4 | 44.5 |
|
55 |
+
|
56 |
+
|
57 |
+
## Usage
|
58 |
+
### Installation
|
59 |
+
```bash
|
60 |
+
pip install git+https://github.com/TIGER-AI-Lab/MantisScore.git
|
61 |
+
```
|
62 |
+
|
63 |
+
### Inference
|
64 |
+
|
65 |
+
### Training
|
66 |
+
MantisScore is trained on
|
67 |
+
|
68 |
+
### Evaluation
|
69 |
+
|
70 |
+
## Citation
|