wenhu commited on
Commit
e597f74
·
verified ·
1 Parent(s): 0c889af

Upload 3 files

Browse files
preprocessor_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoImageProcessor": "processing_phi3_v.Phi3VImageProcessor",
4
+ "AutoProcessor": "processing_phi3_v.Phi3VProcessor"
5
+ },
6
+ "do_convert_rgb": true,
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_processor_type": "Phi3VImageProcessor",
13
+ "image_std": [
14
+ 0.26862954,
15
+ 0.26130258,
16
+ 0.27577711
17
+ ],
18
+ "num_crops": 4,
19
+ "num_img_tokens": 144,
20
+ "processor_class": "Phi3VProcessor"
21
+ }
processing_phi3_v.py ADDED
@@ -0,0 +1,493 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """
17
+ Processor class for Phi3-V.
18
+ """
19
+ import re
20
+ from typing import List, Optional, Union
21
+
22
+ import torch
23
+
24
+ import transformers
25
+ from transformers.feature_extraction_utils import BatchFeature
26
+ from transformers.image_utils import ImageInput
27
+ from transformers.processing_utils import ProcessorMixin
28
+ from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
29
+ from transformers.utils import TensorType
30
+
31
+ """Image processor class for Phi3-V."""
32
+
33
+ from typing import List, Optional, Union
34
+
35
+ import numpy as np
36
+
37
+ from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
38
+ from transformers.image_transforms import (
39
+ convert_to_rgb,
40
+ )
41
+ from transformers.image_utils import (
42
+ OPENAI_CLIP_MEAN,
43
+ OPENAI_CLIP_STD,
44
+ ImageInput,
45
+ make_list_of_images,
46
+ valid_images,
47
+ )
48
+ from transformers.utils import TensorType, is_vision_available, logging
49
+
50
+ from transformers import AutoImageProcessor
51
+
52
+ logger = logging.get_logger(__name__)
53
+
54
+ if is_vision_available():
55
+ from PIL import Image
56
+
57
+ import torch
58
+ import torchvision
59
+
60
+
61
+ def padding_336(b):
62
+ width, height = b.size
63
+ tar = int(np.ceil(height / 336) * 336)
64
+ top_padding = int((tar - height) / 2)
65
+ bottom_padding = tar - height - top_padding
66
+ left_padding = 0
67
+ right_padding = 0
68
+ b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding],
69
+ fill=[255, 255, 255])
70
+
71
+ return b
72
+
73
+
74
+ def calc_padded_size(width, height, padding_unit=336):
75
+ target_height = int(np.ceil(height / padding_unit) * padding_unit)
76
+ top_padding = int((target_height - height) / 2)
77
+ bottom_padding = target_height - height - top_padding
78
+ left_padding = 0
79
+ right_padding = 0
80
+ padded_width = width + left_padding + right_padding
81
+ padded_height = height + top_padding + bottom_padding
82
+ return padded_width, padded_height
83
+
84
+
85
+ def HD_transform(img, hd_num=16):
86
+ width, height = img.size
87
+ trans = False
88
+ if width < height:
89
+ img = img.transpose(Image.TRANSPOSE)
90
+ trans = True
91
+ width, height = img.size
92
+ ratio = (width / height)
93
+ scale = 1
94
+ while scale * np.ceil(scale / ratio) <= hd_num:
95
+ scale += 1
96
+ scale -= 1
97
+ new_w = int(scale * 336)
98
+ new_h = int(new_w / ratio)
99
+
100
+ img = torchvision.transforms.functional.resize(img, [new_h, new_w], )
101
+ img = padding_336(img)
102
+ width, height = img.size
103
+ if trans:
104
+ img = img.transpose(Image.TRANSPOSE)
105
+
106
+ return img
107
+
108
+
109
+ def calc_hd_transform_size(width, height, hd_num=16):
110
+ transposed = False
111
+ if width < height:
112
+ width, height = height, width
113
+ transposed = True
114
+
115
+ ratio = width / height
116
+ scale = 1
117
+ while scale * np.ceil(scale / ratio) <= hd_num:
118
+ scale += 1
119
+ scale -= 1
120
+
121
+ new_width = int(scale * 336)
122
+ new_height = int(new_width / ratio)
123
+
124
+ padded_width, padded_height = calc_padded_size(new_width, new_height)
125
+
126
+ if transposed:
127
+ padded_width, padded_height = padded_height, padded_width
128
+
129
+ return padded_width, padded_height
130
+
131
+
132
+ def pad_to_max_num_crops_tensor(images, max_crops=5):
133
+ """
134
+ images: B x 3 x H x W, B<=max_crops
135
+ """
136
+ B, _, H, W = images.shape
137
+ if B < max_crops:
138
+ pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
139
+ images = torch.cat([images, pad], dim=0)
140
+ return images
141
+
142
+
143
+ class Phi3VImageProcessor(BaseImageProcessor):
144
+ r"""
145
+ Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
146
+ for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512)
147
+
148
+ Args:
149
+ image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
150
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
151
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
152
+ image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
153
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
154
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
155
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
156
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
157
+ Whether to convert the image to RGB.
158
+ """
159
+
160
+ model_input_names = ["pixel_values"]
161
+
162
+ def __init__(
163
+ self,
164
+ num_crops: int = 1,
165
+ image_mean: Optional[Union[float, List[float]]] = None,
166
+ image_std: Optional[Union[float, List[float]]] = None,
167
+ do_convert_rgb: bool = True,
168
+ **kwargs,
169
+ ) -> None:
170
+ super().__init__(**kwargs)
171
+ self.num_crops = num_crops
172
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
173
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
174
+ self.do_convert_rgb = do_convert_rgb
175
+
176
+ def calc_num_image_tokens(
177
+ self,
178
+ images: ImageInput
179
+ ):
180
+ """ Calculate the number of image tokens for each image.
181
+ Args:
182
+ images (`ImageInput`):
183
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
184
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
185
+ """
186
+ images = make_list_of_images(images)
187
+
188
+ if not valid_images(images):
189
+ raise ValueError(
190
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
191
+ "torch.Tensor, tf.Tensor or jax.ndarray."
192
+ )
193
+
194
+ images = [image.convert('RGB') for image in images]
195
+ # (H, W, C)
196
+ elems = [HD_transform(im, hd_num=self.num_crops) for im in images]
197
+ shapes = [[im.size[1], im.size[0]] for im in elems]
198
+ num_img_tokens = [int((h // 336 * w // 336 + 1) * 144 + 1 + (h // 336 + 1) * 12) for h, w in shapes]
199
+ return num_img_tokens
200
+
201
+ def calc_num_image_tokens_from_image_size(self, width, height):
202
+ """
203
+ Calculate the number of image tokens for a given image size.
204
+ Args:
205
+ width (`int`): Width of the image.
206
+ height (`int`): Height of the image.
207
+ """
208
+ new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)
209
+ num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
210
+ return num_img_tokens
211
+
212
+ def preprocess(
213
+ self,
214
+ images: ImageInput,
215
+ image_mean: Optional[Union[float, List[float]]] = None,
216
+ image_std: Optional[Union[float, List[float]]] = None,
217
+ do_convert_rgb: bool = None,
218
+ return_tensors: Optional[Union[str, TensorType]] = None,
219
+ ):
220
+ """
221
+ Args:
222
+ images (`ImageInput`):
223
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
224
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
225
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
226
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
227
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
228
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
229
+ `True`.
230
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
231
+ Whether to convert the image to RGB.
232
+ return_tensors (`str` or `TensorType`, *optional*):
233
+ The type of tensors to return. Can be one of:
234
+ - Unset: Return a list of `np.ndarray`.
235
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
236
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
237
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
238
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
239
+ """
240
+ image_mean = image_mean if image_mean is not None else self.image_mean
241
+ image_std = image_std if image_std is not None else self.image_std
242
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
243
+
244
+ images = make_list_of_images(images)
245
+
246
+ if not valid_images(images):
247
+ raise ValueError(
248
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
249
+ "torch.Tensor, tf.Tensor or jax.ndarray."
250
+ )
251
+
252
+ if do_convert_rgb:
253
+ images = [convert_to_rgb(image) for image in images]
254
+
255
+ image_sizes = []
256
+ img_processor = torchvision.transforms.Compose([
257
+ torchvision.transforms.ToTensor(),
258
+ torchvision.transforms.Normalize(image_mean, image_std)
259
+ ])
260
+
261
+ # PIL images
262
+ # HD_transform pad images to size of multiiply of 336, 336
263
+ # convert to RGB first
264
+ images = [image.convert('RGB') for image in images]
265
+ elems = [HD_transform(im, hd_num=self.num_crops) for im in images]
266
+ # tensor transform and normalize
267
+ hd_images = [img_processor(im) for im in elems]
268
+ # create global image
269
+ global_image = [
270
+ torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic', ).to(im.dtype) for
271
+ im in hd_images]
272
+
273
+ # [(3, h, w)], where h, w is multiple of 336
274
+ shapes = [[im.size(1), im.size(2)] for im in hd_images]
275
+ num_img_tokens = [int(((h // 336) * (w // 336) + 1) * 144 + 1 + (h // 336 + 1) * 12) for h, w in shapes]
276
+ # reshape to channel dimension -> (num_images, num_crops, 3, 336, 336)
277
+ # (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336)
278
+ hd_images_reshape = [
279
+ im.reshape(1, 3, h // 336, 336, w // 336, 336).permute(0, 2, 4, 1, 3, 5).reshape(-1, 3, 336,
280
+ 336).contiguous() for
281
+ im, (h, w) in zip(hd_images, shapes)]
282
+ # concat global image and local image
283
+ hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in
284
+ zip(global_image, hd_images_reshape)]
285
+
286
+ # pad to max_num_crops
287
+ image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops + 1) for im in hd_images_reshape]
288
+ image_transformed = torch.stack(image_transformed, dim=0)
289
+ image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
290
+ padded_images = image_transformed
291
+ image_sizes = shapes
292
+
293
+ data = {"pixel_values": padded_images,
294
+ "image_sizes": image_sizes,
295
+ "num_img_tokens": num_img_tokens
296
+ }
297
+
298
+ return BatchFeature(data=data, tensor_type=return_tensors)
299
+
300
+
301
+ AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)
302
+
303
+ transformers.Phi3VImageProcessor = Phi3VImageProcessor
304
+
305
+
306
+ class Phi3VProcessor(ProcessorMixin):
307
+ r"""
308
+ Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor.
309
+
310
+ [`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the
311
+ [`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information.
312
+
313
+ Args:
314
+ image_processor ([`Phi3VImageProcessor`], *optional*):
315
+ The image processor is a required input.
316
+ tokenizer ([`LlamaTokenizerFast`], *optional*):
317
+ The tokenizer is a required input.
318
+ """
319
+
320
+ attributes = ["image_processor", "tokenizer"]
321
+ image_processor_class = "Phi3VImageProcessor"
322
+ tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
323
+ special_image_token = "<|image|>"
324
+
325
+ def __init__(self, image_processor, tokenizer):
326
+ self.image_processor = image_processor
327
+ self.tokenizer = tokenizer
328
+ self.num_img_tokens = image_processor.num_img_tokens
329
+ self.img_tokens = [f"<|image_{i + 1}|>" for i in range(1000000)]
330
+
331
+ def __call__(
332
+ self,
333
+ text: Union[TextInput, List[TextInput]],
334
+ images: ImageInput = None,
335
+ padding: Union[bool, str, PaddingStrategy] = False,
336
+ truncation: Union[bool, str, TruncationStrategy] = None,
337
+ max_length=None,
338
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
339
+ ) -> BatchFeature:
340
+ """
341
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
342
+ and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
343
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
344
+ Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
345
+ of the above two methods for more information.
346
+
347
+ Args:
348
+ text (`str`, `List[str]`, `List[List[str]]`):
349
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
350
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
351
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
352
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
353
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
354
+ tensor. Both channels-first and channels-last formats are supported.
355
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
356
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
357
+ index) among:
358
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
359
+ sequence if provided).
360
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
361
+ acceptable input length for the model if that argument is not provided.
362
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
363
+ lengths).
364
+ max_length (`int`, *optional*):
365
+ Maximum length of the returned list and optionally padding length (see above).
366
+ truncation (`bool`, *optional*):
367
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
368
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
369
+ If set, will return tensors of a particular framework. Acceptable values are:
370
+
371
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
372
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
373
+ - `'np'`: Return NumPy `np.ndarray` objects.
374
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
375
+
376
+ Returns:
377
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
378
+
379
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
380
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
381
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
382
+ `None`).
383
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
384
+ """
385
+ if images is not None:
386
+ image_inputs = self.image_processor(images, return_tensors=return_tensors)
387
+ else:
388
+ image_inputs = {}
389
+ inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation,
390
+ max_length=max_length, return_tensors=return_tensors)
391
+ return inputs
392
+
393
+ def calc_num_image_tokens(self, images: ImageInput):
394
+ """ Calculate the number of image tokens for each image.
395
+ Args:
396
+ images (`ImageInput`):
397
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
398
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
399
+ """
400
+ return self.image_processor.calc_num_image_tokens(images)
401
+
402
+ def calc_num_image_tokens_from_image_size(self, width, height):
403
+ """ Calculate the number of image token for an image with given width and height.
404
+ Args:
405
+ width (`int`):
406
+ Width of the image.
407
+ height (`int`):
408
+ Height of the image.
409
+ """
410
+ return self.image_processor.calc_num_image_tokens_from_image_size(width, height)
411
+
412
+ @property
413
+ def special_image_token_id(self):
414
+ return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
415
+
416
+ def get_special_image_token_id(self):
417
+ return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
418
+
419
+ def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None,
420
+ return_tensors=None):
421
+ if not len(images):
422
+ model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation,
423
+ max_length=max_length)
424
+ return BatchFeature(data={**model_inputs})
425
+
426
+ pattern = r"<\|image_\d+\|>"
427
+ prompt_chunks = [self.tokenizer(chunk, truncation=truncation, max_length=max_length).input_ids for chunk in re.split(pattern, texts)]
428
+
429
+ if 'num_img_tokens' in images:
430
+ num_img_tokens = images['num_img_tokens']
431
+ else:
432
+ assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided'
433
+ num_crops = images['num_crops']
434
+ num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops]
435
+
436
+ images, image_sizes = images['pixel_values'], images['image_sizes']
437
+
438
+ # image_tags needs to start from 1 to n
439
+ image_tags = re.findall(pattern, texts)
440
+ # image_ids = [int(s.split("|")[1].split("_")[-1]) * -1 for s in image_tags]
441
+ # image_ids_pad = [[iid]*num_img_tokens[i] for i, iid in enumerate(image_ids)]
442
+ image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
443
+ unique_image_ids = sorted(list(set(image_ids)))
444
+ # image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be [1, 4, 5]
445
+ # check the condition
446
+ assert unique_image_ids == list(range(1,
447
+ len(unique_image_ids) + 1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
448
+ # total images must be the same as the number of image tags
449
+ assert len(unique_image_ids) == len(
450
+ images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images"
451
+
452
+ image_ids_pad = [[-iid] * num_img_tokens[iid - 1] for iid in image_ids]
453
+
454
+ def insert_separator(X, sep_list):
455
+ if len(X) > len(sep_list):
456
+ sep_list.append([])
457
+ return [ele for sublist in zip(X, sep_list) for ele in sublist]
458
+
459
+ input_ids = []
460
+ offset = 0
461
+ for x in insert_separator(prompt_chunks, image_ids_pad):
462
+ input_ids.extend(x[offset:])
463
+
464
+ input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
465
+ attention_mask = (input_ids > -1000000).to(torch.long)
466
+
467
+ return BatchFeature(data={"input_ids": input_ids,
468
+ "attention_mask": attention_mask,
469
+ "pixel_values": images,
470
+ "image_sizes": image_sizes})
471
+
472
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
473
+ def batch_decode(self, *args, **kwargs):
474
+ """
475
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
476
+ refer to the docstring of this method for more information.
477
+ """
478
+ return self.tokenizer.batch_decode(*args, **kwargs)
479
+
480
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
481
+ def decode(self, *args, **kwargs):
482
+ """
483
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
484
+ the docstring of this method for more information.
485
+ """
486
+ return self.tokenizer.decode(*args, **kwargs)
487
+
488
+ @property
489
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
490
+ def model_input_names(self):
491
+ tokenizer_input_names = self.tokenizer.model_input_names
492
+ image_processor_input_names = self.image_processor.model_input_names
493
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_phi3_v.Phi3VProcessor"
4
+ },
5
+ "processor_class": "Phi3VProcessor"
6
+ }