Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- THUdyh/Oryx-Image-Data
|
5 |
+
base_model:
|
6 |
+
- Qwen/Qwen2.5-32B-Instruct
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
- zh
|
11 |
+
---
|
12 |
+
# Oryx-1.5-7B-Image
|
13 |
+
|
14 |
+
## Model Summary
|
15 |
+
|
16 |
+
The Oryx-Image models are 7/32B parameter models trained based on Qwen2.5 language model with a context window of 32K tokens.
|
17 |
+
|
18 |
+
Oryx offers an on-demand solution to seamlessly and efficiently process visual inputs with arbitrary spatial sizes and temporal lengths.
|
19 |
+
|
20 |
+
- **Repository:** https://github.com/Oryx-mllm/Oryx
|
21 |
+
- **Languages:** English, Chinese
|
22 |
+
- **Paper:** https://arxiv.org/abs/2409.12961
|
23 |
+
|
24 |
+
|
25 |
+
### Model Architecture
|
26 |
+
|
27 |
+
- **Architecture:** Pre-trained [Oryx-ViT](https://huggingface.co/THUdyh/Oryx-ViT) + Qwen2.5-32B
|
28 |
+
- **Data:** a mixture of 4M image data
|
29 |
+
- **Precision:** BFloat16
|
30 |
+
|
31 |
+
#### Hardware & Software
|
32 |
+
|
33 |
+
- **Hardware:** 64 * NVIDIA Tesla A100
|
34 |
+
- **Orchestration:** HuggingFace Trainer
|
35 |
+
- **Code:** Pytorch
|
36 |
+
|
37 |
+
## Citation
|