Ubuntu commited on
Commit
5bac540
·
1 Parent(s): f762044

readme update

Browse files
Files changed (3) hide show
  1. README.md +9 -5
  2. README_en.md +131 -0
  3. generation_config.json +13 -0
README.md CHANGED
@@ -15,11 +15,15 @@ inference: false
15
 
16
  # GLM-4-9B-Chat-1M
17
 
18
- GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。
19
- 在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出较高的性能。
20
- 除了能进行多轮对话,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K
21
- 上下文)等高级功能。
22
- 本代模型增加了多语言支持,支持包括日语,韩语,德语在内的 26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的模型。
 
 
 
 
23
 
24
  ## 评测结果
25
 
 
15
 
16
  # GLM-4-9B-Chat-1M
17
 
18
+ Read this in [English](README_en.md)
19
+
20
+ GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。 在语义、数学、推理、代码和知识等多方面的数据集测评中,
21
+ **GLM-4-9B** 及其人类偏好对齐的版本 **GLM-4-9B-Chat** 均表现出超越 Llama-3-8B 的卓越性能。除了能进行多轮对话,GLM-4-9B-Chat
22
+ 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。本代模型增加了多语言支持,支持包括日语,韩语,德语在内的
23
+ 26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的 **GLM-4-9B-Chat-1M** 模型和基于 GLM-4-9B 的多模态模型
24
+ GLM-4V-9B。**GLM-4V-9B** 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B
25
+ 表现出超越 GPT-4-turbo-2024-04-09、Gemini
26
+ 1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。
27
 
28
  ## 评测结果
29
 
README_en.md ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GLM-4-9B-Chat-1M
2
+
3
+ ## Model Introduction
4
+
5
+ GLM-4-9B is the open-source version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu
6
+ AI. In the evaluation of data sets in semantics, mathematics, reasoning, code, and knowledge, **GLM-4-9B**
7
+ and its human preference-aligned version **GLM-4-9B-Chat** have shown superior performance beyond Llama-3-8B. In
8
+ addition to multi-round conversations, GLM-4-9B-Chat also has advanced features such as web browsing, code execution,
9
+ custom tool calls (Function Call), and long text
10
+ reasoning (supporting up to 128K context). This generation of models has added multi-language support, supporting 26
11
+ languages including Japanese, Korean, and German. We have also launched the **GLM-4-9B-Chat-1M** model that supports 1M
12
+ context length (about 2 million Chinese characters) and the multimodal model GLM-4V-9B based on GLM-4-9B.
13
+ **GLM-4V-9B** possesses dialogue capabilities in both Chinese and English at a high resolution of 1120*1120.
14
+ In various multimodal evaluations, including comprehensive abilities in Chinese and English, perception & reasoning,
15
+ text recognition, and chart understanding, GLM-4V-9B demonstrates superior performance compared to
16
+ GPT-4-turbo-2024-04-09, Gemini 1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.
17
+
18
+ ### Long Context
19
+
20
+ The [eval_needle experiment](https://github.com/LargeWorldModel/LWM/blob/main/scripts/eval_needle.py) was conducted with
21
+ a context length of 1M, and the results are as follows:
22
+
23
+ ![needle](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/eval_needle.jpeg)
24
+
25
+ The long text capability was further evaluated on LongBench, and the results are as follows:
26
+
27
+ ![leaderboard](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/longbench.png)
28
+
29
+ **This repository is the model repository of GLM-4-9B-Chat-1M, supporting `1M` context length.**
30
+
31
+ ## Quick call
32
+
33
+ **For hardware configuration and system requirements, please check [here](basic_demo/README_en.md).**
34
+
35
+ ### Use the following method to quickly call the GLM-4-9B-Chat language model
36
+
37
+ Use the transformers backend for inference:
38
+
39
+ ```python
40
+ import torch
41
+ from transformers import AutoModelForCausalLM, AutoTokenizer
42
+
43
+ device = "cuda"
44
+
45
+ tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat-1m",trust_remote_code=True)
46
+
47
+ query = "hello"
48
+
49
+ inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
50
+ add_generation_prompt=True,
51
+ tokenize=True,
52
+ return_tensors="pt",
53
+ return_dict=True
54
+ )
55
+
56
+ inputs = inputs.to(device)
57
+ model = AutoModelForCausalLM.from_pretrained(
58
+ "THUDM/glm-4-9b-chat-1m",
59
+ torch_dtype=torch.bfloat16,
60
+ low_cpu_mem_usage=True,
61
+ trust_remote_code=True
62
+ ).to(device).eval()
63
+
64
+ gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
65
+ with torch.no_grad():
66
+ outputs = model.generate(**inputs, **gen_kwargs)
67
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
68
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
69
+ ```
70
+
71
+ Use the vLLM backend for inference:
72
+
73
+ ```python
74
+ from transformers import AutoTokenizer
75
+ from vllm import LLM, SamplingParams
76
+
77
+ # GLM-4-9B-Chat-1M
78
+
79
+ # If you encounter OOM, it is recommended to reduce max_model_len or increase tp_size
80
+
81
+ max_model_len, tp_size = 1048576, 4
82
+
83
+ model_name = "THUDM/glm-4-9b-chat-1m"
84
+ prompt = [{"role": "user", "content": "你好"}]
85
+
86
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
87
+ llm = LLM(
88
+ model=model_name,
89
+ tensor_parallel_size=tp_size,
90
+ max_model_len=max_model_len,
91
+ trust_remote_code=True,
92
+ enforce_eager=True,
93
+ # GLM-4-9B-Chat-1M If you encounter OOM phenomenon, it is recommended to turn on the following parameters
94
+ # enable_chunked_prefill=True,
95
+ # max_num_batched_tokens=8192
96
+ )
97
+ stop_token_ids = [151329, 151336, 151338]
98
+ sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids)
99
+
100
+ inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
101
+ outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)
102
+
103
+ print(outputs[0].outputs[0].text)
104
+ ```
105
+
106
+ ## LICENSE
107
+
108
+ The weights of the GLM-4 model are available under the terms of [LICENSE](LICENSE).
109
+
110
+ ## Citations
111
+
112
+ If you find our work useful, please consider citing the following paper.
113
+
114
+ ```
115
+ @article{zeng2022glm,
116
+ title={Glm-130b: An open bilingual pre-trained model},
117
+ author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
118
+ journal={arXiv preprint arXiv:2210.02414},
119
+ year={2022}
120
+ }
121
+ ```
122
+
123
+ ```
124
+ @inproceedings{du2022glm,
125
+ title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
126
+ author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
127
+ booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
128
+ pages={320--335},
129
+ year={2022}
130
+ }
131
+ ```
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token_id": [
3
+ 151329,
4
+ 151336,
5
+ 151338
6
+ ],
7
+ "pad_token_id": 151329,
8
+ "do_sample": true,
9
+ "temperature": 0.8,
10
+ "max_length": 1024000,
11
+ "top_p": 0.8,
12
+ "transformers_version": "4.38.2"
13
+ }