duzx16 commited on
Commit
67b4d91
·
1 Parent(s): 899b042

init commit

Browse files
MODEL_LICENSE ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The ChatGLM3-6B License
2
+
3
+ 1. 定义
4
+
5
+ “许可方”是指分发其软件的 ChatGLM3-6B 模型团队。
6
+
7
+ “软件”是指根据本许可提供的 ChatGLM3-6B 模型参数。
8
+
9
+ 2. 许可授予
10
+
11
+ 根据本许可的条款和条件,许可方特此授予您非排他性、全球性、不可转让、不可再许可、可撤销、免版税的版权许可。
12
+
13
+ 上述版权声明和本许可声明应包含在本软件的所有副本或重要部分中。
14
+
15
+ 3.限制
16
+
17
+ 您不得出于任何军事或非法目的使用、复制、修改、合并、发布、分发、复制或创建本软件的全部或部分衍生作品。
18
+
19
+ 您不得利用本软件从事任何危害国家安全和国家统一、危害社会公共利益、侵犯人身权益的行为。
20
+
21
+ 4.免责声明
22
+
23
+ 本软件“按原样”提供,不提供任何明示或暗示的保证,包括但不限于对适销性、特定用途的适用性和非侵权性的保证。 在任何情况下,作者或版权持有人均不对任何索赔、损害或其他责任负责,无论是在合同诉讼、侵权行为还是其他方面,由软件或软件的使用或其他交易引起、由软件引起或与之相关 软件。
24
+
25
+ 5. 责任限制
26
+
27
+ 除适用法律禁止的范围外,在任何情况下且根据任何法律理论,无论是基于侵权行为、疏忽、合同、责任或其他原因,任何许可方均不对您承担任何直接、间接、特殊、偶然、示范性、 或间接损害,或任何其他商业损失,即使许可人已被告知此类损害的可能性。
28
+
29
+ 6.争议解决
30
+
31
+ 本许可受中华人民共和国法律管辖并按其解释。 因本许可引起的或与本许可有关的任何争议应提交北京市海淀区人民法院。
32
+
33
+ 请注意,许可证可能会更新到更全面的版本。 有关许可和版权的任何问题,请通过 [email protected] 与我们联系。
34
+
35
+ 1. Definitions
36
+
37
+ “Licensor” means the ChatGLM3-6B Model Team that distributes its Software.
38
+
39
+ “Software” means the ChatGLM3-6B model parameters made available under this license.
40
+
41
+ 2. License Grant
42
+
43
+ Subject to the terms and conditions of this License, the Licensor hereby grants to you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty-free copyright license to use the Software.
44
+
45
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
46
+
47
+ 3. Restriction
48
+
49
+ You will not use, copy, modify, merge, publish, distribute, reproduce, or create derivative works of the Software, in whole or in part, for any military, or illegal purposes.
50
+
51
+ You will not use the Software for any act that may undermine China's national security and national unity, harm the public interest of society, or infringe upon the rights and interests of human beings.
52
+
53
+ 4. Disclaimer
54
+
55
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
56
+
57
+ 5. Limitation of Liability
58
+
59
+ EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER BASED IN TORT, NEGLIGENCE, CONTRACT, LIABILITY, OR OTHERWISE WILL ANY LICENSOR BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER COMMERCIAL LOSSES, EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
60
+
61
+ 6. Dispute Resolution
62
+
63
+ This license shall be governed and construed in accordance with the laws of People’s Republic of China. Any dispute arising from or in connection with this License shall be submitted to Haidian District People's Court in Beijing.
64
+
65
+ Note that the license is subject to update to a more comprehensive version. For any questions related to the license and copyright, please contact us at [email protected].
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ - en
5
+ tags:
6
+ - glm
7
+ - chatglm
8
+ - thudm
9
+ ---
10
+ # ChatGLM3-6B-Base
11
+ <p align="center">
12
+ 💻 <a href="https://github.com/THUDM/ChatGLM2-6B" target="_blank">Github Repo</a> • 🐦 <a href="https://twitter.com/thukeg" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/abs/2103.10360" target="_blank">[GLM@ACL 22]</a> <a href="https://github.com/THUDM/GLM" target="_blank">[GitHub]</a> • 📃 <a href="https://arxiv.org/abs/2210.02414" target="_blank">[GLM-130B@ICLR 23]</a> <a href="https://github.com/THUDM/GLM-130B" target="_blank">[GitHub]</a> <br>
13
+ </p>
14
+
15
+ <p align="center">
16
+ 👋 Join our <a href="https://join.slack.com/t/chatglm/shared_invite/zt-25ti5uohv-A_hs~am_D3Q8XPZMpj7wwQ" target="_blank">Slack</a> and <a href="https://github.com/THUDM/ChatGLM/blob/main/resources/WECHAT.md" target="_blank">WeChat</a>
17
+ </p>
18
+ <p align="center">
19
+ 📍Experience the larger-scale ChatGLM model at <a href="https://www.chatglm.cn">chatglm.cn</a>
20
+ </p>
21
+
22
+ ## 介绍
23
+ ChatGLM3-6B 是 ChatGLM 系列最新一代的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:
24
+
25
+ 1. **更强大的基础模型:** ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的预训练模型中最强的性能。
26
+ 2. **更完整的功能支持:** ChatGLM3-6B 采用了全新设计的 [Prompt 格式](PROMPT.md),除正常的多轮对话外。同时原生支持[工具调用](tool_using/README.md)(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。
27
+ 3. **更全面的开源序列:** 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM-6B-Base、长文本对话模型 ChatGLM3-6B-32K。以上所有权重对学术研究**完全开放**,在填写[问卷](https://open.bigmodel.cn/mla/form)进行登记后**亦允许免费商业使用**。
28
+
29
+ 本仓库为 ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base。
30
+
31
+ ## 软件依赖
32
+
33
+ ```shell
34
+ pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 gradio mdtex2html sentencepiece accelerate
35
+ ```
36
+
37
+ ## 代码调用
38
+
39
+ 作为没有经过人类意图对齐的模型,ChatGLM3-6B-Base 不能用于多轮对话。但是可以进行文本续写。
40
+
41
+ ```python
42
+ from transformers import AutoTokenizer, AutoModel
43
+ tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-base", trust_remote_code=True)
44
+ model = AutoModel.from_pretrained("THUDM/chatglm3-6b-base", trust_remote_code=True).half().cuda()
45
+
46
+ inputs = tokenizer(["今天天气真不错"], return_tensors="pt").to('cuda')
47
+ outputs = tokenizer.generate(**inputs)
48
+ print(tokenizer.decode(outputs[0].tolist()))
49
+ ```
50
+
51
+ 关于更多的使用说明,包括如何运行命令行和网页版本的 DEMO,以及使用模型量化以节省显存,请参考我们的 [Github Repo](https://github.com/THUDM/ChatGLM)。
52
+
53
+ For more instructions, including how to run CLI and web demos, and model quantization, please refer to our [Github Repo](https://github.com/THUDM/ChatGLM).
54
+
55
+
56
+ ## 协议
57
+
58
+ 本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源,ChatGLM3-6B 模型的权重的使用则需要遵循 [Model License](MODEL_LICENSE)。
59
+
60
+ ## 引用
61
+
62
+ 如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
63
+
64
+ ```
65
+ @article{zeng2022glm,
66
+ title={Glm-130b: An open bilingual pre-trained model},
67
+ author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
68
+ journal={arXiv preprint arXiv:2210.02414},
69
+ year={2022}
70
+ }
71
+ ```
72
+ ```
73
+ @inproceedings{du2022glm,
74
+ title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
75
+ author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
76
+ booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
77
+ pages={320--335},
78
+ year={2022}
79
+ }
80
+ ```
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "THUDM/chatglm3-6b-base",
3
+ "model_type": "chatglm",
4
+ "architectures": [
5
+ "ChatGLMModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
9
+ "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
10
+ "AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
11
+ "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
12
+ "AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
13
+ },
14
+ "add_bias_linear": false,
15
+ "add_qkv_bias": true,
16
+ "apply_query_key_layer_scaling": true,
17
+ "apply_residual_connection_post_layernorm": false,
18
+ "attention_dropout": 0.0,
19
+ "attention_softmax_in_fp32": true,
20
+ "bias_dropout_fusion": true,
21
+ "ffn_hidden_size": 13696,
22
+ "fp32_residual_connection": false,
23
+ "hidden_dropout": 0.0,
24
+ "hidden_size": 4096,
25
+ "kv_channels": 128,
26
+ "layernorm_epsilon": 1e-05,
27
+ "multi_query_attention": true,
28
+ "multi_query_group_num": 2,
29
+ "num_attention_heads": 32,
30
+ "num_layers": 28,
31
+ "original_rope": true,
32
+ "padded_vocab_size": 65024,
33
+ "post_layer_norm": true,
34
+ "rmsnorm": true,
35
+ "seq_length": 32768,
36
+ "use_cache": true,
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.30.2",
39
+ "tie_word_embeddings": false,
40
+ "eos_token_id": 2,
41
+ "pad_token_id": 0
42
+ }
configuration_chatglm.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class ChatGLMConfig(PretrainedConfig):
5
+ model_type = "chatglm"
6
+ def __init__(
7
+ self,
8
+ num_layers=28,
9
+ padded_vocab_size=65024,
10
+ hidden_size=4096,
11
+ ffn_hidden_size=13696,
12
+ kv_channels=128,
13
+ num_attention_heads=32,
14
+ seq_length=2048,
15
+ hidden_dropout=0.0,
16
+ classifier_dropout=None,
17
+ attention_dropout=0.0,
18
+ layernorm_epsilon=1e-5,
19
+ rmsnorm=True,
20
+ apply_residual_connection_post_layernorm=False,
21
+ post_layer_norm=True,
22
+ add_bias_linear=False,
23
+ add_qkv_bias=False,
24
+ bias_dropout_fusion=True,
25
+ multi_query_attention=False,
26
+ multi_query_group_num=1,
27
+ apply_query_key_layer_scaling=True,
28
+ attention_softmax_in_fp32=True,
29
+ fp32_residual_connection=False,
30
+ quantization_bit=0,
31
+ pre_seq_len=None,
32
+ prefix_projection=False,
33
+ **kwargs
34
+ ):
35
+ self.num_layers = num_layers
36
+ self.vocab_size = padded_vocab_size
37
+ self.padded_vocab_size = padded_vocab_size
38
+ self.hidden_size = hidden_size
39
+ self.ffn_hidden_size = ffn_hidden_size
40
+ self.kv_channels = kv_channels
41
+ self.num_attention_heads = num_attention_heads
42
+ self.seq_length = seq_length
43
+ self.hidden_dropout = hidden_dropout
44
+ self.classifier_dropout = classifier_dropout
45
+ self.attention_dropout = attention_dropout
46
+ self.layernorm_epsilon = layernorm_epsilon
47
+ self.rmsnorm = rmsnorm
48
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
49
+ self.post_layer_norm = post_layer_norm
50
+ self.add_bias_linear = add_bias_linear
51
+ self.add_qkv_bias = add_qkv_bias
52
+ self.bias_dropout_fusion = bias_dropout_fusion
53
+ self.multi_query_attention = multi_query_attention
54
+ self.multi_query_group_num = multi_query_group_num
55
+ self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
56
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
57
+ self.fp32_residual_connection = fp32_residual_connection
58
+ self.quantization_bit = quantization_bit
59
+ self.pre_seq_len = pre_seq_len
60
+ self.prefix_projection = prefix_projection
61
+ super().__init__(**kwargs)
modeling_chatglm.py ADDED
@@ -0,0 +1,1294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+
3
+ import math
4
+ import copy
5
+ import warnings
6
+ import re
7
+ import sys
8
+
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ import torch.nn.functional as F
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss, LayerNorm
14
+ from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
15
+ from torch.nn.utils import skip_init
16
+ from typing import Optional, Tuple, Union, List, Callable, Dict, Any
17
+ from copy import deepcopy
18
+
19
+ from transformers.modeling_outputs import (
20
+ BaseModelOutputWithPast,
21
+ CausalLMOutputWithPast,
22
+ SequenceClassifierOutputWithPast,
23
+ )
24
+ from transformers.modeling_utils import PreTrainedModel
25
+ from transformers.utils import logging
26
+ from transformers.generation.logits_process import LogitsProcessor
27
+ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
28
+
29
+ from .configuration_chatglm import ChatGLMConfig
30
+
31
+ # flags required to enable jit fusion kernels
32
+
33
+ if sys.platform != 'darwin':
34
+ torch._C._jit_set_profiling_mode(False)
35
+ torch._C._jit_set_profiling_executor(False)
36
+ torch._C._jit_override_can_fuse_on_cpu(True)
37
+ torch._C._jit_override_can_fuse_on_gpu(True)
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM2-6B"
42
+ _CONFIG_FOR_DOC = "ChatGLM6BConfig"
43
+
44
+ CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
45
+ "THUDM/chatglm2-6b",
46
+ # See all ChatGLM models at https://huggingface.co/models?filter=chatglm
47
+ ]
48
+
49
+
50
+ def default_init(cls, *args, **kwargs):
51
+ return cls(*args, **kwargs)
52
+
53
+
54
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
55
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
56
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
57
+ scores.zero_()
58
+ scores[..., 5] = 5e4
59
+ return scores
60
+
61
+
62
+ class PrefixEncoder(torch.nn.Module):
63
+ """
64
+ The torch.nn model to encode the prefix
65
+ Input shape: (batch-size, prefix-length)
66
+ Output shape: (batch-size, prefix-length, 2*layers*hidden)
67
+ """
68
+
69
+ def __init__(self, config: ChatGLMConfig):
70
+ super().__init__()
71
+ self.prefix_projection = config.prefix_projection
72
+ if self.prefix_projection:
73
+ # Use a two-layer MLP to encode the prefix
74
+ kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
75
+ self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
76
+ self.trans = torch.nn.Sequential(
77
+ torch.nn.Linear(kv_size, config.hidden_size),
78
+ torch.nn.Tanh(),
79
+ torch.nn.Linear(config.hidden_size, kv_size)
80
+ )
81
+ else:
82
+ self.embedding = torch.nn.Embedding(config.pre_seq_len,
83
+ config.num_layers * config.kv_channels * config.multi_query_group_num * 2)
84
+
85
+ def forward(self, prefix: torch.Tensor):
86
+ if self.prefix_projection:
87
+ prefix_tokens = self.embedding(prefix)
88
+ past_key_values = self.trans(prefix_tokens)
89
+ else:
90
+ past_key_values = self.embedding(prefix)
91
+ return past_key_values
92
+
93
+
94
+ def split_tensor_along_last_dim(
95
+ tensor: torch.Tensor,
96
+ num_partitions: int,
97
+ contiguous_split_chunks: bool = False,
98
+ ) -> List[torch.Tensor]:
99
+ """Split a tensor along its last dimension.
100
+
101
+ Arguments:
102
+ tensor: input tensor.
103
+ num_partitions: number of partitions to split the tensor
104
+ contiguous_split_chunks: If True, make each chunk contiguous
105
+ in memory.
106
+
107
+ Returns:
108
+ A list of Tensors
109
+ """
110
+ # Get the size and dimension.
111
+ last_dim = tensor.dim() - 1
112
+ last_dim_size = tensor.size()[last_dim] // num_partitions
113
+ # Split.
114
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
115
+ # Note: torch.split does not create contiguous tensors by default.
116
+ if contiguous_split_chunks:
117
+ return tuple(chunk.contiguous() for chunk in tensor_list)
118
+
119
+ return tensor_list
120
+
121
+
122
+ class RotaryEmbedding(nn.Module):
123
+ def __init__(self, dim, original_impl=False, device=None, dtype=None):
124
+ super().__init__()
125
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
126
+ self.register_buffer("inv_freq", inv_freq)
127
+ self.dim = dim
128
+ self.original_impl = original_impl
129
+
130
+ def forward_impl(
131
+ self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
132
+ ):
133
+ """Enhanced Transformer with Rotary Position Embedding.
134
+
135
+ Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
136
+ transformers/rope/__init__.py. MIT License:
137
+ https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
138
+ """
139
+ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
140
+ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
141
+
142
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
143
+ seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
144
+
145
+ # Calculate the product of position index and $\theta_i$
146
+ idx_theta = torch.outer(seq_idx, theta).float()
147
+
148
+ cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
149
+
150
+ # this is to mimic the behaviour of complex32, else we will get different results
151
+ if dtype in (torch.float16, torch.bfloat16, torch.int8):
152
+ cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
153
+ return cache
154
+
155
+ def forward(self, max_seq_len, offset=0):
156
+ return self.forward_impl(
157
+ max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
158
+ )
159
+
160
+
161
+ @torch.jit.script
162
+ def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
163
+ # x: [sq, b, np, hn]
164
+ sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
165
+ rot_dim = rope_cache.shape[-2] * 2
166
+ x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
167
+ # truncate to support variable sizes
168
+ rope_cache = rope_cache[:sq]
169
+ xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
170
+ rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
171
+ x_out2 = torch.stack(
172
+ [
173
+ xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
174
+ xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
175
+ ],
176
+ -1,
177
+ )
178
+ x_out2 = x_out2.flatten(3)
179
+ return torch.cat((x_out2, x_pass), dim=-1)
180
+
181
+
182
+ class RMSNorm(torch.nn.Module):
183
+ def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
184
+ super().__init__()
185
+ self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
186
+ self.eps = eps
187
+
188
+ def forward(self, hidden_states: torch.Tensor):
189
+ input_dtype = hidden_states.dtype
190
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
191
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
192
+
193
+ return (self.weight * hidden_states).to(input_dtype)
194
+
195
+
196
+ class CoreAttention(torch.nn.Module):
197
+ def __init__(self, config: ChatGLMConfig, layer_number):
198
+ super(CoreAttention, self).__init__()
199
+
200
+ self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
201
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
202
+ if self.apply_query_key_layer_scaling:
203
+ self.attention_softmax_in_fp32 = True
204
+ self.layer_number = max(1, layer_number)
205
+
206
+ projection_size = config.kv_channels * config.num_attention_heads
207
+
208
+ # Per attention head and per partition values.
209
+ self.hidden_size_per_partition = projection_size
210
+ self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
211
+ self.num_attention_heads_per_partition = config.num_attention_heads
212
+
213
+ coeff = None
214
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
215
+ if self.apply_query_key_layer_scaling:
216
+ coeff = self.layer_number
217
+ self.norm_factor *= coeff
218
+ self.coeff = coeff
219
+
220
+ self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
221
+
222
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
223
+ pytorch_major_version = int(torch.__version__.split('.')[0])
224
+ if pytorch_major_version >= 2:
225
+ query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
226
+ if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
227
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
228
+ is_causal=True)
229
+ else:
230
+ if attention_mask is not None:
231
+ attention_mask = ~attention_mask
232
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
233
+ attention_mask)
234
+ context_layer = context_layer.permute(2, 0, 1, 3)
235
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
236
+ context_layer = context_layer.reshape(*new_context_layer_shape)
237
+ else:
238
+ # Raw attention scores
239
+
240
+ # [b, np, sq, sk]
241
+ output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
242
+
243
+ # [sq, b, np, hn] -> [sq, b * np, hn]
244
+ query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
245
+ # [sk, b, np, hn] -> [sk, b * np, hn]
246
+ key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
247
+
248
+ # preallocting input tensor: [b * np, sq, sk]
249
+ matmul_input_buffer = torch.empty(
250
+ output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
251
+ device=query_layer.device
252
+ )
253
+
254
+ # Raw attention scores. [b * np, sq, sk]
255
+ matmul_result = torch.baddbmm(
256
+ matmul_input_buffer,
257
+ query_layer.transpose(0, 1), # [b * np, sq, hn]
258
+ key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
259
+ beta=0.0,
260
+ alpha=(1.0 / self.norm_factor),
261
+ )
262
+
263
+ # change view to [b, np, sq, sk]
264
+ attention_scores = matmul_result.view(*output_size)
265
+
266
+ # ===========================
267
+ # Attention probs and dropout
268
+ # ===========================
269
+
270
+ # attention scores and attention mask [b, np, sq, sk]
271
+ if self.attention_softmax_in_fp32:
272
+ attention_scores = attention_scores.float()
273
+ if self.coeff is not None:
274
+ attention_scores = attention_scores * self.coeff
275
+ if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
276
+ attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
277
+ device=attention_scores.device, dtype=torch.bool)
278
+ attention_mask.tril_()
279
+ attention_mask = ~attention_mask
280
+ if attention_mask is not None:
281
+ attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
282
+ attention_probs = F.softmax(attention_scores, dim=-1)
283
+ attention_probs = attention_probs.type_as(value_layer)
284
+
285
+ # This is actually dropping out entire tokens to attend to, which might
286
+ # seem a bit unusual, but is taken from the original Transformer paper.
287
+ attention_probs = self.attention_dropout(attention_probs)
288
+ # =========================
289
+ # Context layer. [sq, b, hp]
290
+ # =========================
291
+
292
+ # value_layer -> context layer.
293
+ # [sk, b, np, hn] --> [b, np, sq, hn]
294
+
295
+ # context layer shape: [b, np, sq, hn]
296
+ output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
297
+ # change view [sk, b * np, hn]
298
+ value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
299
+ # change view [b * np, sq, sk]
300
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
301
+ # matmul: [b * np, sq, hn]
302
+ context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
303
+ # change view [b, np, sq, hn]
304
+ context_layer = context_layer.view(*output_size)
305
+ # [b, np, sq, hn] --> [sq, b, np, hn]
306
+ context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
307
+ # [sq, b, np, hn] --> [sq, b, hp]
308
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
309
+ context_layer = context_layer.view(*new_context_layer_shape)
310
+
311
+ return context_layer
312
+
313
+
314
+ class SelfAttention(torch.nn.Module):
315
+ """Parallel self-attention layer abstract class.
316
+
317
+ Self-attention layer takes input with size [s, b, h]
318
+ and returns output of the same size.
319
+ """
320
+
321
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
322
+ super(SelfAttention, self).__init__()
323
+ self.layer_number = max(1, layer_number)
324
+
325
+ self.projection_size = config.kv_channels * config.num_attention_heads
326
+
327
+ # Per attention head and per partition values.
328
+ self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
329
+ self.num_attention_heads_per_partition = config.num_attention_heads
330
+
331
+ self.multi_query_attention = config.multi_query_attention
332
+ self.qkv_hidden_size = 3 * self.projection_size
333
+ if self.multi_query_attention:
334
+ self.num_multi_query_groups_per_partition = config.multi_query_group_num
335
+ self.qkv_hidden_size = (
336
+ self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
337
+ )
338
+ self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
339
+ bias=config.add_bias_linear or config.add_qkv_bias,
340
+ device=device, **_config_to_kwargs(config)
341
+ )
342
+
343
+ self.core_attention = CoreAttention(config, self.layer_number)
344
+
345
+ # Output.
346
+ self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
347
+ device=device, **_config_to_kwargs(config)
348
+ )
349
+
350
+ def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
351
+ if self.multi_query_attention:
352
+ num_attention_heads = self.num_multi_query_groups_per_partition
353
+ else:
354
+ num_attention_heads = self.num_attention_heads_per_partition
355
+ return torch.empty(
356
+ inference_max_sequence_len,
357
+ batch_size,
358
+ num_attention_heads,
359
+ self.hidden_size_per_attention_head,
360
+ dtype=dtype,
361
+ device=device,
362
+ )
363
+
364
+ def forward(
365
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
366
+ ):
367
+ # hidden_states: [sq, b, h]
368
+
369
+ # =================================================
370
+ # Pre-allocate memory for key-values for inference.
371
+ # =================================================
372
+ # =====================
373
+ # Query, Key, and Value
374
+ # =====================
375
+
376
+ # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
377
+ mixed_x_layer = self.query_key_value(hidden_states)
378
+
379
+ if self.multi_query_attention:
380
+ (query_layer, key_layer, value_layer) = mixed_x_layer.split(
381
+ [
382
+ self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
383
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
384
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
385
+ ],
386
+ dim=-1,
387
+ )
388
+ query_layer = query_layer.view(
389
+ query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
390
+ )
391
+ key_layer = key_layer.view(
392
+ key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
393
+ )
394
+ value_layer = value_layer.view(
395
+ value_layer.size()[:-1]
396
+ + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
397
+ )
398
+ else:
399
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
400
+ (self.num_attention_heads_per_partition,
401
+ 3 * self.hidden_size_per_attention_head)
402
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
403
+
404
+ # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
405
+ (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
406
+
407
+ # apply relative positional encoding (rotary embedding)
408
+ if rotary_pos_emb is not None:
409
+ query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
410
+ key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
411
+
412
+ # adjust key and value for inference
413
+ if kv_cache is not None:
414
+ cache_k, cache_v = kv_cache
415
+ key_layer = torch.cat((cache_k, key_layer), dim=0)
416
+ value_layer = torch.cat((cache_v, value_layer), dim=0)
417
+ if use_cache:
418
+ kv_cache = (key_layer, value_layer)
419
+ else:
420
+ kv_cache = None
421
+
422
+ if self.multi_query_attention:
423
+ key_layer = key_layer.unsqueeze(-2)
424
+ key_layer = key_layer.expand(
425
+ -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
426
+ )
427
+ key_layer = key_layer.contiguous().view(
428
+ key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
429
+ )
430
+ value_layer = value_layer.unsqueeze(-2)
431
+ value_layer = value_layer.expand(
432
+ -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
433
+ )
434
+ value_layer = value_layer.contiguous().view(
435
+ value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
436
+ )
437
+
438
+ # ==================================
439
+ # core attention computation
440
+ # ==================================
441
+
442
+ context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
443
+
444
+ # =================
445
+ # Output. [sq, b, h]
446
+ # =================
447
+
448
+ output = self.dense(context_layer)
449
+
450
+ return output, kv_cache
451
+
452
+
453
+ def _config_to_kwargs(args):
454
+ common_kwargs = {
455
+ "dtype": args.torch_dtype,
456
+ }
457
+ return common_kwargs
458
+
459
+
460
+ class MLP(torch.nn.Module):
461
+ """MLP.
462
+
463
+ MLP will take the input with h hidden state, project it to 4*h
464
+ hidden dimension, perform nonlinear transformation, and project the
465
+ state back into h hidden dimension.
466
+ """
467
+
468
+ def __init__(self, config: ChatGLMConfig, device=None):
469
+ super(MLP, self).__init__()
470
+
471
+ self.add_bias = config.add_bias_linear
472
+
473
+ # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
474
+ self.dense_h_to_4h = nn.Linear(
475
+ config.hidden_size,
476
+ config.ffn_hidden_size * 2,
477
+ bias=self.add_bias,
478
+ device=device,
479
+ **_config_to_kwargs(config)
480
+ )
481
+
482
+ def swiglu(x):
483
+ x = torch.chunk(x, 2, dim=-1)
484
+ return F.silu(x[0]) * x[1]
485
+
486
+ self.activation_func = swiglu
487
+
488
+ # Project back to h.
489
+ self.dense_4h_to_h = nn.Linear(
490
+ config.ffn_hidden_size,
491
+ config.hidden_size,
492
+ bias=self.add_bias,
493
+ device=device,
494
+ **_config_to_kwargs(config)
495
+ )
496
+
497
+ def forward(self, hidden_states):
498
+ # [s, b, 4hp]
499
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
500
+ intermediate_parallel = self.activation_func(intermediate_parallel)
501
+ # [s, b, h]
502
+ output = self.dense_4h_to_h(intermediate_parallel)
503
+ return output
504
+
505
+
506
+ class GLMBlock(torch.nn.Module):
507
+ """A single transformer layer.
508
+
509
+ Transformer layer takes input with size [s, b, h] and returns an
510
+ output of the same size.
511
+ """
512
+
513
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
514
+ super(GLMBlock, self).__init__()
515
+ self.layer_number = layer_number
516
+
517
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
518
+
519
+ self.fp32_residual_connection = config.fp32_residual_connection
520
+
521
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
522
+ # Layernorm on the input data.
523
+ self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
524
+ dtype=config.torch_dtype)
525
+
526
+ # Self attention.
527
+ self.self_attention = SelfAttention(config, layer_number, device=device)
528
+ self.hidden_dropout = config.hidden_dropout
529
+
530
+ # Layernorm on the attention output
531
+ self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
532
+ dtype=config.torch_dtype)
533
+
534
+ # MLP
535
+ self.mlp = MLP(config, device=device)
536
+
537
+ def forward(
538
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
539
+ ):
540
+ # hidden_states: [s, b, h]
541
+
542
+ # Layer norm at the beginning of the transformer layer.
543
+ layernorm_output = self.input_layernorm(hidden_states)
544
+ # Self attention.
545
+ attention_output, kv_cache = self.self_attention(
546
+ layernorm_output,
547
+ attention_mask,
548
+ rotary_pos_emb,
549
+ kv_cache=kv_cache,
550
+ use_cache=use_cache
551
+ )
552
+
553
+ # Residual connection.
554
+ if self.apply_residual_connection_post_layernorm:
555
+ residual = layernorm_output
556
+ else:
557
+ residual = hidden_states
558
+
559
+ layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
560
+ layernorm_input = residual + layernorm_input
561
+
562
+ # Layer norm post the self attention.
563
+ layernorm_output = self.post_attention_layernorm(layernorm_input)
564
+
565
+ # MLP.
566
+ mlp_output = self.mlp(layernorm_output)
567
+
568
+ # Second residual connection.
569
+ if self.apply_residual_connection_post_layernorm:
570
+ residual = layernorm_output
571
+ else:
572
+ residual = layernorm_input
573
+
574
+ output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
575
+ output = residual + output
576
+
577
+ return output, kv_cache
578
+
579
+
580
+ class GLMTransformer(torch.nn.Module):
581
+ """Transformer class."""
582
+
583
+ def __init__(self, config: ChatGLMConfig, device=None):
584
+ super(GLMTransformer, self).__init__()
585
+
586
+ self.fp32_residual_connection = config.fp32_residual_connection
587
+ self.post_layer_norm = config.post_layer_norm
588
+
589
+ # Number of layers.
590
+ self.num_layers = config.num_layers
591
+
592
+ # Transformer layers.
593
+ def build_layer(layer_number):
594
+ return GLMBlock(config, layer_number, device=device)
595
+
596
+ self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
597
+
598
+ if self.post_layer_norm:
599
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
600
+ # Final layer norm before output.
601
+ self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
602
+ dtype=config.torch_dtype)
603
+
604
+ self.gradient_checkpointing = False
605
+
606
+ def _get_layer(self, layer_number):
607
+ return self.layers[layer_number]
608
+
609
+ def forward(
610
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
611
+ use_cache: Optional[bool] = True,
612
+ output_hidden_states: Optional[bool] = False,
613
+ ):
614
+ if not kv_caches:
615
+ kv_caches = [None for _ in range(self.num_layers)]
616
+ presents = () if use_cache else None
617
+ if self.gradient_checkpointing and self.training:
618
+ if use_cache:
619
+ logger.warning_once(
620
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
621
+ )
622
+ use_cache = False
623
+
624
+ all_self_attentions = None
625
+ all_hidden_states = () if output_hidden_states else None
626
+ for index in range(self.num_layers):
627
+ if output_hidden_states:
628
+ all_hidden_states = all_hidden_states + (hidden_states,)
629
+
630
+ layer = self._get_layer(index)
631
+ if self.gradient_checkpointing and self.training:
632
+ layer_ret = torch.utils.checkpoint.checkpoint(
633
+ layer,
634
+ hidden_states,
635
+ attention_mask,
636
+ rotary_pos_emb,
637
+ kv_caches[index],
638
+ use_cache
639
+ )
640
+ else:
641
+ layer_ret = layer(
642
+ hidden_states,
643
+ attention_mask,
644
+ rotary_pos_emb,
645
+ kv_cache=kv_caches[index],
646
+ use_cache=use_cache
647
+ )
648
+ hidden_states, kv_cache = layer_ret
649
+ if use_cache:
650
+ presents = presents + (kv_cache,)
651
+
652
+ if output_hidden_states:
653
+ all_hidden_states = all_hidden_states + (hidden_states,)
654
+
655
+ # Final layer norm.
656
+ if self.post_layer_norm:
657
+ hidden_states = self.final_layernorm(hidden_states)
658
+
659
+ return hidden_states, presents, all_hidden_states, all_self_attentions
660
+
661
+
662
+ class ChatGLMPreTrainedModel(PreTrainedModel):
663
+ """
664
+ An abstract class to handle weights initialization and
665
+ a simple interface for downloading and loading pretrained models.
666
+ """
667
+
668
+ is_parallelizable = False
669
+ supports_gradient_checkpointing = True
670
+ config_class = ChatGLMConfig
671
+ base_model_prefix = "transformer"
672
+ _no_split_modules = ["GLMBlock"]
673
+
674
+ def _init_weights(self, module: nn.Module):
675
+ """Initialize the weights."""
676
+ return
677
+
678
+ def get_masks(self, input_ids, past_key_values, padding_mask=None):
679
+ batch_size, seq_length = input_ids.shape
680
+ full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
681
+ full_attention_mask.tril_()
682
+ past_length = 0
683
+ if past_key_values:
684
+ past_length = past_key_values[0][0].shape[0]
685
+ if past_length:
686
+ full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
687
+ device=input_ids.device), full_attention_mask), dim=-1)
688
+ if padding_mask is not None:
689
+ full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
690
+ if not past_length and padding_mask is not None:
691
+ full_attention_mask -= padding_mask.unsqueeze(-1) - 1
692
+ full_attention_mask = (full_attention_mask < 0.5).bool()
693
+ full_attention_mask.unsqueeze_(1)
694
+ return full_attention_mask
695
+
696
+ def get_position_ids(self, input_ids, device):
697
+ batch_size, seq_length = input_ids.shape
698
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
699
+ return position_ids
700
+
701
+ def _set_gradient_checkpointing(self, module, value=False):
702
+ if isinstance(module, GLMTransformer):
703
+ module.gradient_checkpointing = value
704
+
705
+
706
+ class Embedding(torch.nn.Module):
707
+ """Language model embeddings."""
708
+
709
+ def __init__(self, config: ChatGLMConfig, device=None):
710
+ super(Embedding, self).__init__()
711
+
712
+ self.hidden_size = config.hidden_size
713
+ # Word embeddings (parallel).
714
+ self.word_embeddings = nn.Embedding(
715
+ config.padded_vocab_size,
716
+ self.hidden_size,
717
+ dtype=config.torch_dtype,
718
+ device=device
719
+ )
720
+ self.fp32_residual_connection = config.fp32_residual_connection
721
+
722
+ def forward(self, input_ids):
723
+ # Embeddings.
724
+ words_embeddings = self.word_embeddings(input_ids)
725
+ embeddings = words_embeddings
726
+ # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
727
+ embeddings = embeddings.transpose(0, 1).contiguous()
728
+ # If the input flag for fp32 residual connection is set, convert for float.
729
+ if self.fp32_residual_connection:
730
+ embeddings = embeddings.float()
731
+ return embeddings
732
+
733
+
734
+ class ChatGLMModel(ChatGLMPreTrainedModel):
735
+ def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
736
+ super().__init__(config)
737
+ if empty_init:
738
+ init_method = skip_init
739
+ else:
740
+ init_method = default_init
741
+ init_kwargs = {}
742
+ if device is not None:
743
+ init_kwargs["device"] = device
744
+ self.embedding = init_method(Embedding, config, **init_kwargs)
745
+ self.num_layers = config.num_layers
746
+ self.multi_query_group_num = config.multi_query_group_num
747
+ self.kv_channels = config.kv_channels
748
+
749
+ # Rotary positional embeddings
750
+ self.seq_length = config.seq_length
751
+ rotary_dim = (
752
+ config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
753
+ )
754
+
755
+ self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl=config.original_rope, device=device,
756
+ dtype=config.torch_dtype)
757
+ self.encoder = init_method(GLMTransformer, config, **init_kwargs)
758
+ self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
759
+ dtype=config.torch_dtype, **init_kwargs)
760
+ self.pre_seq_len = config.pre_seq_len
761
+ self.prefix_projection = config.prefix_projection
762
+ if self.pre_seq_len is not None:
763
+ for param in self.parameters():
764
+ param.requires_grad = False
765
+ self.prefix_tokens = torch.arange(self.pre_seq_len).long()
766
+ self.prefix_encoder = PrefixEncoder(config)
767
+ self.dropout = torch.nn.Dropout(0.1)
768
+
769
+ def get_input_embeddings(self):
770
+ return self.embedding.word_embeddings
771
+
772
+ def get_prompt(self, batch_size, device, dtype=torch.half):
773
+ prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
774
+ past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
775
+ past_key_values = past_key_values.view(
776
+ batch_size,
777
+ self.pre_seq_len,
778
+ self.num_layers * 2,
779
+ self.multi_query_group_num,
780
+ self.kv_channels
781
+ )
782
+ # seq_len, b, nh, hidden_size
783
+ past_key_values = self.dropout(past_key_values)
784
+ past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
785
+ return past_key_values
786
+
787
+ def forward(
788
+ self,
789
+ input_ids,
790
+ position_ids: Optional[torch.Tensor] = None,
791
+ attention_mask: Optional[torch.BoolTensor] = None,
792
+ full_attention_mask: Optional[torch.BoolTensor] = None,
793
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
794
+ inputs_embeds: Optional[torch.Tensor] = None,
795
+ use_cache: Optional[bool] = None,
796
+ output_hidden_states: Optional[bool] = None,
797
+ return_dict: Optional[bool] = None,
798
+ ):
799
+ output_hidden_states = (
800
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
801
+ )
802
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
803
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
804
+
805
+ batch_size, seq_length = input_ids.shape
806
+
807
+ if inputs_embeds is None:
808
+ inputs_embeds = self.embedding(input_ids)
809
+
810
+ if self.pre_seq_len is not None:
811
+ if past_key_values is None:
812
+ past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
813
+ dtype=inputs_embeds.dtype)
814
+ if attention_mask is not None:
815
+ attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)),
816
+ attention_mask], dim=-1)
817
+
818
+ if full_attention_mask is None:
819
+ if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
820
+ full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
821
+
822
+ # Rotary positional embeddings
823
+ rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
824
+ if position_ids is not None:
825
+ rotary_pos_emb = rotary_pos_emb[position_ids]
826
+ else:
827
+ rotary_pos_emb = rotary_pos_emb[None, :seq_length]
828
+ rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
829
+
830
+ # Run encoder.
831
+ hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
832
+ inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
833
+ kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
834
+ )
835
+
836
+ if not return_dict:
837
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
838
+
839
+ return BaseModelOutputWithPast(
840
+ last_hidden_state=hidden_states,
841
+ past_key_values=presents,
842
+ hidden_states=all_hidden_states,
843
+ attentions=all_self_attentions,
844
+ )
845
+
846
+ def quantize(self, weight_bit_width: int):
847
+ from .quantization import quantize
848
+ quantize(self.encoder, weight_bit_width)
849
+ return self
850
+
851
+
852
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
853
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
854
+ super().__init__(config)
855
+
856
+ self.max_sequence_length = config.max_length
857
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
858
+ self.config = config
859
+ self.quantized = False
860
+
861
+ if self.config.quantization_bit:
862
+ self.quantize(self.config.quantization_bit, empty_init=True)
863
+
864
+ def _update_model_kwargs_for_generation(
865
+ self,
866
+ outputs: ModelOutput,
867
+ model_kwargs: Dict[str, Any],
868
+ is_encoder_decoder: bool = False,
869
+ standardize_cache_format: bool = False,
870
+ ) -> Dict[str, Any]:
871
+ # update past_key_values
872
+ model_kwargs["past_key_values"] = self._extract_past_from_model_output(
873
+ outputs, standardize_cache_format=standardize_cache_format
874
+ )
875
+
876
+ # update attention mask
877
+ if "attention_mask" in model_kwargs:
878
+ attention_mask = model_kwargs["attention_mask"]
879
+ model_kwargs["attention_mask"] = torch.cat(
880
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
881
+ )
882
+
883
+ # update position ids
884
+ if "position_ids" in model_kwargs:
885
+ position_ids = model_kwargs["position_ids"]
886
+ new_position_id = position_ids[..., -1:].clone()
887
+ new_position_id += 1
888
+ model_kwargs["position_ids"] = torch.cat(
889
+ [position_ids, new_position_id], dim=-1
890
+ )
891
+
892
+ model_kwargs["is_first_forward"] = False
893
+ return model_kwargs
894
+
895
+ def prepare_inputs_for_generation(
896
+ self,
897
+ input_ids: torch.LongTensor,
898
+ past_key_values: Optional[torch.Tensor] = None,
899
+ attention_mask: Optional[torch.Tensor] = None,
900
+ position_ids: Optional[torch.Tensor] = None,
901
+ use_cache: Optional[bool] = None,
902
+ is_first_forward: bool = True,
903
+ **kwargs
904
+ ) -> dict:
905
+ # only last token for input_ids if past is not None
906
+ if position_ids is None:
907
+ position_ids = self.get_position_ids(input_ids, device=input_ids.device)
908
+ if not is_first_forward:
909
+ if past_key_values is not None:
910
+ position_ids = position_ids[..., -1:]
911
+ input_ids = input_ids[:, -1:]
912
+ return {
913
+ "input_ids": input_ids,
914
+ "past_key_values": past_key_values,
915
+ "position_ids": position_ids,
916
+ "attention_mask": attention_mask,
917
+ "return_last_logit": True,
918
+ "use_cache": use_cache
919
+ }
920
+
921
+ def forward(
922
+ self,
923
+ input_ids: Optional[torch.Tensor] = None,
924
+ position_ids: Optional[torch.Tensor] = None,
925
+ attention_mask: Optional[torch.Tensor] = None,
926
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
927
+ inputs_embeds: Optional[torch.Tensor] = None,
928
+ labels: Optional[torch.Tensor] = None,
929
+ use_cache: Optional[bool] = None,
930
+ output_attentions: Optional[bool] = None,
931
+ output_hidden_states: Optional[bool] = None,
932
+ return_dict: Optional[bool] = None,
933
+ return_last_logit: Optional[bool] = False,
934
+ ):
935
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
936
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
937
+
938
+ transformer_outputs = self.transformer(
939
+ input_ids=input_ids,
940
+ position_ids=position_ids,
941
+ attention_mask=attention_mask,
942
+ past_key_values=past_key_values,
943
+ inputs_embeds=inputs_embeds,
944
+ use_cache=use_cache,
945
+ output_hidden_states=output_hidden_states,
946
+ return_dict=return_dict,
947
+ )
948
+
949
+ hidden_states = transformer_outputs[0]
950
+ if return_last_logit:
951
+ hidden_states = hidden_states[-1:]
952
+ lm_logits = self.transformer.output_layer(hidden_states)
953
+ lm_logits = lm_logits.transpose(0, 1).contiguous()
954
+
955
+ loss = None
956
+ if labels is not None:
957
+ lm_logits = lm_logits.to(torch.float32)
958
+
959
+ # Shift so that tokens < n predict n
960
+ shift_logits = lm_logits[..., :-1, :].contiguous()
961
+ shift_labels = labels[..., 1:].contiguous()
962
+ # Flatten the tokens
963
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
964
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
965
+
966
+ lm_logits = lm_logits.to(hidden_states.dtype)
967
+ loss = loss.to(hidden_states.dtype)
968
+
969
+ if not return_dict:
970
+ output = (lm_logits,) + transformer_outputs[1:]
971
+ return ((loss,) + output) if loss is not None else output
972
+
973
+ return CausalLMOutputWithPast(
974
+ loss=loss,
975
+ logits=lm_logits,
976
+ past_key_values=transformer_outputs.past_key_values,
977
+ hidden_states=transformer_outputs.hidden_states,
978
+ attentions=transformer_outputs.attentions,
979
+ )
980
+
981
+ @staticmethod
982
+ def _reorder_cache(
983
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
984
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
985
+ """
986
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
987
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
988
+ beam_idx at every generation step.
989
+
990
+ Output shares the same memory storage as `past`.
991
+ """
992
+ return tuple(
993
+ (
994
+ layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
995
+ layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
996
+ )
997
+ for layer_past in past
998
+ )
999
+
1000
+ def process_response(self, output, history):
1001
+ content = ""
1002
+ history = deepcopy(history)
1003
+ for response in output.split("<|assistant|>"):
1004
+ metadata, content = response.split("\n", maxsplit=1)
1005
+ if not metadata.strip():
1006
+ content = content.strip()
1007
+ history.append({"role": "assistant", "metadata": metadata, "content": content})
1008
+ content = content.replace("[[训练时间]]", "2023年")
1009
+ else:
1010
+ history.append({"role": "assistant", "metadata": metadata, "content": content})
1011
+ if history[0]["role"] == "system" and "tools" in history[0]:
1012
+ content = "\n".join(content.split("\n")[1:-1])
1013
+ def tool_call(**kwargs):
1014
+ return kwargs
1015
+ parameters = eval(content)
1016
+ content = {"name": metadata.strip(), "parameters": parameters}
1017
+ else:
1018
+ content = {"name": metadata.strip(), "content": content}
1019
+ return content, history
1020
+
1021
+ @torch.inference_mode()
1022
+ def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, role: str = "user",
1023
+ max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
1024
+ **kwargs):
1025
+ if history is None:
1026
+ history = []
1027
+ if logits_processor is None:
1028
+ logits_processor = LogitsProcessorList()
1029
+ logits_processor.append(InvalidScoreLogitsProcessor())
1030
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1031
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1032
+ inputs = tokenizer.build_chat_input(query, history=history, role=role)
1033
+ inputs = inputs.to(self.device)
1034
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
1035
+ tokenizer.get_command("<|observation|>")]
1036
+ outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
1037
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1038
+ response = tokenizer.decode(outputs)
1039
+ history.append({"role": role, "content": query})
1040
+ response, history = self.process_response(response, history)
1041
+ return response, history
1042
+
1043
+ @torch.inference_mode()
1044
+ def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, role: str = "user",
1045
+ past_key_values=None,max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,
1046
+ logits_processor=None, return_past_key_values=False, **kwargs):
1047
+ if history is None:
1048
+ history = []
1049
+ if logits_processor is None:
1050
+ logits_processor = LogitsProcessorList()
1051
+ logits_processor.append(InvalidScoreLogitsProcessor())
1052
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
1053
+ tokenizer.get_command("<|observation|>")]
1054
+ gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
1055
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1056
+ if past_key_values is None:
1057
+ inputs = tokenizer.build_chat_input(query, history=history, role=role)
1058
+ else:
1059
+ inputs = tokenizer.build_chat_input(query, role=role)
1060
+ inputs = inputs.to(self.device)
1061
+ if past_key_values is not None:
1062
+ past_length = past_key_values[0][0].shape[0]
1063
+ if self.transformer.pre_seq_len is not None:
1064
+ past_length -= self.transformer.pre_seq_len
1065
+ inputs.position_ids += past_length
1066
+ attention_mask = inputs.attention_mask
1067
+ attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
1068
+ inputs['attention_mask'] = attention_mask
1069
+ history.append({"role": role, "content": query})
1070
+ for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
1071
+ eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
1072
+ **gen_kwargs):
1073
+ if return_past_key_values:
1074
+ outputs, past_key_values = outputs
1075
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1076
+ response = tokenizer.decode(outputs)
1077
+ if response and response[-1] != "�":
1078
+ response, new_history = self.process_response(response, history)
1079
+ if return_past_key_values:
1080
+ yield response, new_history, past_key_values
1081
+ else:
1082
+ yield response, new_history
1083
+
1084
+ @torch.inference_mode()
1085
+ def stream_generate(
1086
+ self,
1087
+ input_ids,
1088
+ generation_config: Optional[GenerationConfig] = None,
1089
+ logits_processor: Optional[LogitsProcessorList] = None,
1090
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1091
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1092
+ return_past_key_values=False,
1093
+ **kwargs,
1094
+ ):
1095
+ batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
1096
+
1097
+ if generation_config is None:
1098
+ generation_config = self.generation_config
1099
+ generation_config = copy.deepcopy(generation_config)
1100
+ model_kwargs = generation_config.update(**kwargs)
1101
+ model_kwargs["use_cache"] = generation_config.use_cache
1102
+ bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
1103
+
1104
+ if isinstance(eos_token_id, int):
1105
+ eos_token_id = [eos_token_id]
1106
+ eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
1107
+
1108
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1109
+ if has_default_max_length and generation_config.max_new_tokens is None:
1110
+ warnings.warn(
1111
+ f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
1112
+ "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
1113
+ " recommend using `max_new_tokens` to control the maximum length of the generation.",
1114
+ UserWarning,
1115
+ )
1116
+ elif generation_config.max_new_tokens is not None:
1117
+ generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
1118
+ if not has_default_max_length:
1119
+ logger.warn(
1120
+ f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
1121
+ f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
1122
+ "Please refer to the documentation for more information. "
1123
+ "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
1124
+ UserWarning,
1125
+ )
1126
+
1127
+ if input_ids_seq_length >= generation_config.max_length:
1128
+ input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1129
+ logger.warning(
1130
+ f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
1131
+ f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1132
+ " increasing `max_new_tokens`."
1133
+ )
1134
+
1135
+ # 2. Set generation parameters if not already defined
1136
+ logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
1137
+ stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
1138
+
1139
+ logits_processor = self._get_logits_processor(
1140
+ generation_config=generation_config,
1141
+ input_ids_seq_length=input_ids_seq_length,
1142
+ encoder_input_ids=input_ids,
1143
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1144
+ logits_processor=logits_processor,
1145
+ )
1146
+
1147
+ stopping_criteria = self._get_stopping_criteria(
1148
+ generation_config=generation_config, stopping_criteria=stopping_criteria
1149
+ )
1150
+ logits_warper = self._get_logits_warper(generation_config)
1151
+
1152
+ unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
1153
+ scores = None
1154
+ while True:
1155
+ model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
1156
+ # forward pass to get next token
1157
+ outputs = self(
1158
+ **model_inputs,
1159
+ return_dict=True,
1160
+ output_attentions=False,
1161
+ output_hidden_states=False,
1162
+ )
1163
+
1164
+ next_token_logits = outputs.logits[:, -1, :]
1165
+
1166
+ # pre-process distribution
1167
+ next_token_scores = logits_processor(input_ids, next_token_logits)
1168
+ next_token_scores = logits_warper(input_ids, next_token_scores)
1169
+
1170
+ # sample
1171
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
1172
+ if generation_config.do_sample:
1173
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
1174
+ else:
1175
+ next_tokens = torch.argmax(probs, dim=-1)
1176
+ # update generated ids, model inputs, and length for next step
1177
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
1178
+ model_kwargs = self._update_model_kwargs_for_generation(
1179
+ outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
1180
+ )
1181
+ unfinished_sequences = unfinished_sequences.mul(
1182
+ next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
1183
+ )
1184
+ if return_past_key_values:
1185
+ yield input_ids, outputs.past_key_values
1186
+ else:
1187
+ yield input_ids
1188
+ # stop when each sentence is finished, or if we exceed the maximum length
1189
+ if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
1190
+ break
1191
+
1192
+ def quantize(self, bits: int, empty_init=False, device=None, **kwargs):
1193
+ if bits == 0:
1194
+ return
1195
+
1196
+ from .quantization import quantize
1197
+
1198
+ if self.quantized:
1199
+ logger.info("Already quantized.")
1200
+ return self
1201
+
1202
+ self.quantized = True
1203
+
1204
+ self.config.quantization_bit = bits
1205
+
1206
+ self.transformer.encoder = quantize(self.transformer.encoder, bits, empty_init=empty_init, device=device,
1207
+ **kwargs)
1208
+ return self
1209
+
1210
+
1211
+ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
1212
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
1213
+ super().__init__(config)
1214
+
1215
+ self.num_labels = config.num_labels
1216
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
1217
+
1218
+ self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=torch.half)
1219
+ if config.classifier_dropout is not None:
1220
+ self.dropout = nn.Dropout(config.classifier_dropout)
1221
+ else:
1222
+ self.dropout = None
1223
+ self.config = config
1224
+
1225
+ if self.config.quantization_bit:
1226
+ self.quantize(self.config.quantization_bit, empty_init=True)
1227
+
1228
+ def forward(
1229
+ self,
1230
+ input_ids: Optional[torch.LongTensor] = None,
1231
+ position_ids: Optional[torch.LongTensor] = None,
1232
+ attention_mask: Optional[torch.Tensor] = None,
1233
+ full_attention_mask: Optional[torch.Tensor] = None,
1234
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1235
+ inputs_embeds: Optional[torch.LongTensor] = None,
1236
+ labels: Optional[torch.LongTensor] = None,
1237
+ use_cache: Optional[bool] = None,
1238
+ output_hidden_states: Optional[bool] = None,
1239
+ return_dict: Optional[bool] = None,
1240
+ ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
1241
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1242
+
1243
+ transformer_outputs = self.transformer(
1244
+ input_ids=input_ids,
1245
+ position_ids=position_ids,
1246
+ attention_mask=attention_mask,
1247
+ full_attention_mask=full_attention_mask,
1248
+ past_key_values=past_key_values,
1249
+ inputs_embeds=inputs_embeds,
1250
+ use_cache=use_cache,
1251
+ output_hidden_states=output_hidden_states,
1252
+ return_dict=return_dict,
1253
+ )
1254
+
1255
+ hidden_states = transformer_outputs[0]
1256
+ pooled_hidden_states = hidden_states[-1]
1257
+ if self.dropout is not None:
1258
+ pooled_hidden_states = self.dropout(pooled_hidden_states)
1259
+ logits = self.classifier_head(pooled_hidden_states)
1260
+
1261
+ loss = None
1262
+ if labels is not None:
1263
+ if self.config.problem_type is None:
1264
+ if self.num_labels == 1:
1265
+ self.config.problem_type = "regression"
1266
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1267
+ self.config.problem_type = "single_label_classification"
1268
+ else:
1269
+ self.config.problem_type = "multi_label_classification"
1270
+
1271
+ if self.config.problem_type == "regression":
1272
+ loss_fct = MSELoss()
1273
+ if self.num_labels == 1:
1274
+ loss = loss_fct(logits.squeeze().float(), labels.squeeze())
1275
+ else:
1276
+ loss = loss_fct(logits.float(), labels)
1277
+ elif self.config.problem_type == "single_label_classification":
1278
+ loss_fct = CrossEntropyLoss()
1279
+ loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1))
1280
+ elif self.config.problem_type == "multi_label_classification":
1281
+ loss_fct = BCEWithLogitsLoss()
1282
+ loss = loss_fct(logits.float(), labels.view(-1, self.num_labels))
1283
+
1284
+ if not return_dict:
1285
+ output = (logits,) + transformer_outputs[1:]
1286
+ return ((loss,) + output) if loss is not None else output
1287
+
1288
+ return SequenceClassifierOutputWithPast(
1289
+ loss=loss,
1290
+ logits=logits,
1291
+ past_key_values=transformer_outputs.past_key_values,
1292
+ hidden_states=transformer_outputs.hidden_states,
1293
+ attentions=transformer_outputs.attentions,
1294
+ )
quantization.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.nn import Linear
2
+ from torch.nn.parameter import Parameter
3
+
4
+ import bz2
5
+ import torch
6
+ import base64
7
+ import ctypes
8
+ from transformers.utils import logging
9
+
10
+ from typing import List
11
+ from functools import partial
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+ try:
16
+ from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
17
+
18
+ class Kernel:
19
+ def __init__(self, code: bytes, function_names: List[str]):
20
+ self.code = code
21
+ self._function_names = function_names
22
+ self._cmodule = LazyKernelCModule(self.code)
23
+
24
+ for name in self._function_names:
25
+ setattr(self, name, KernelFunction(self._cmodule, name))
26
+
27
+ quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
28
+
29
+ kernels = Kernel(
30
+ bz2.decompress(base64.b64decode(quantization_code)),
31
+ [
32
+ "int4WeightCompression",
33
+ "int4WeightExtractionFloat",
34
+ "int4WeightExtractionHalf",
35
+ "int8WeightExtractionFloat",
36
+ "int8WeightExtractionHalf",
37
+ ],
38
+ )
39
+ except Exception as exception:
40
+ kernels = None
41
+ logger.warning("Failed to load cpm_kernels:" + str(exception))
42
+
43
+
44
+ class W8A16Linear(torch.autograd.Function):
45
+ @staticmethod
46
+ def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
47
+ ctx.inp_shape = inp.size()
48
+ ctx.weight_bit_width = weight_bit_width
49
+ out_features = quant_w.size(0)
50
+ inp = inp.contiguous().view(-1, inp.size(-1))
51
+ weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
52
+ ctx.weight_shape = weight.size()
53
+ output = inp.mm(weight.t())
54
+ ctx.save_for_backward(inp, quant_w, scale_w)
55
+ return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
56
+
57
+ @staticmethod
58
+ def backward(ctx, grad_output: torch.Tensor):
59
+ inp, quant_w, scale_w = ctx.saved_tensors
60
+ weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width)
61
+ grad_output = grad_output.contiguous().view(-1, weight.size(0))
62
+ grad_input = grad_output.mm(weight)
63
+ grad_weight = grad_output.t().mm(inp)
64
+ return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None
65
+
66
+
67
+ def compress_int4_weight(weight: torch.Tensor): # (n, m)
68
+ with torch.cuda.device(weight.device):
69
+ n, m = weight.size(0), weight.size(1)
70
+ assert m % 2 == 0
71
+ m = m // 2
72
+ out = torch.empty(n, m, dtype=torch.int8, device="cuda")
73
+ stream = torch.cuda.current_stream()
74
+
75
+ gridDim = (n, 1, 1)
76
+ blockDim = (min(round_up(m, 32), 1024), 1, 1)
77
+
78
+ kernels.int4WeightCompression(
79
+ gridDim,
80
+ blockDim,
81
+ 0,
82
+ stream,
83
+ [ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n), ctypes.c_int32(m)],
84
+ )
85
+ return out
86
+
87
+
88
+ def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int):
89
+ assert scale_list.dtype in [torch.half, torch.bfloat16]
90
+ assert weight.dtype in [torch.int8]
91
+ if source_bit_width == 8:
92
+ return weight.to(scale_list.dtype) * scale_list[:, None]
93
+ elif source_bit_width == 4:
94
+ func = (
95
+ kernels.int4WeightExtractionHalf if scale_list.dtype == torch.half else kernels.int4WeightExtractionBFloat16
96
+ )
97
+ else:
98
+ assert False, "Unsupported bit-width"
99
+
100
+ with torch.cuda.device(weight.device):
101
+ n, m = weight.size(0), weight.size(1)
102
+ out = torch.empty(n, m * (8 // source_bit_width), dtype=scale_list.dtype, device="cuda")
103
+ stream = torch.cuda.current_stream()
104
+
105
+ gridDim = (n, 1, 1)
106
+ blockDim = (min(round_up(m, 32), 1024), 1, 1)
107
+
108
+ func(
109
+ gridDim,
110
+ blockDim,
111
+ 0,
112
+ stream,
113
+ [
114
+ ctypes.c_void_p(weight.data_ptr()),
115
+ ctypes.c_void_p(scale_list.data_ptr()),
116
+ ctypes.c_void_p(out.data_ptr()),
117
+ ctypes.c_int32(n),
118
+ ctypes.c_int32(m),
119
+ ],
120
+ )
121
+ return out
122
+
123
+
124
+ class QuantizedLinear(torch.nn.Module):
125
+ def __init__(self, weight_bit_width: int, weight, bias=None, device="cpu", dtype=None, empty_init=False, *args,
126
+ **kwargs):
127
+ super().__init__()
128
+ self.weight_bit_width = weight_bit_width
129
+
130
+ shape = weight.shape
131
+
132
+ if weight is None or empty_init:
133
+ self.weight = torch.empty(shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=device)
134
+ self.weight_scale = torch.empty(shape[0], dtype=dtype, device=device)
135
+ else:
136
+ self.weight_scale = weight.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)
137
+ self.weight = torch.round(weight / self.weight_scale[:, None]).to(torch.int8)
138
+ if weight_bit_width == 4:
139
+ self.weight = compress_int4_weight(self.weight)
140
+
141
+ self.weight = Parameter(self.weight.to(device), requires_grad=False)
142
+ self.weight_scale = Parameter(self.weight_scale.to(device), requires_grad=False)
143
+ self.bias = Parameter(bias.to(device), requires_grad=False) if bias is not None else None
144
+
145
+ def forward(self, input):
146
+ output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
147
+ if self.bias is not None:
148
+ output = output + self.bias
149
+ return output
150
+
151
+
152
+ def quantize(model, weight_bit_width, empty_init=False, device=None):
153
+ """Replace fp16 linear with quantized linear"""
154
+ for layer in model.layers:
155
+ layer.self_attention.query_key_value = QuantizedLinear(
156
+ weight_bit_width=weight_bit_width,
157
+ weight=layer.self_attention.query_key_value.weight.to(torch.cuda.current_device()),
158
+ bias=layer.self_attention.query_key_value.bias,
159
+ dtype=layer.self_attention.query_key_value.weight.dtype,
160
+ device=layer.self_attention.query_key_value.weight.device if device is None else device,
161
+ empty_init=empty_init
162
+ )
163
+ layer.self_attention.dense = QuantizedLinear(
164
+ weight_bit_width=weight_bit_width,
165
+ weight=layer.self_attention.dense.weight.to(torch.cuda.current_device()),
166
+ bias=layer.self_attention.dense.bias,
167
+ dtype=layer.self_attention.dense.weight.dtype,
168
+ device=layer.self_attention.dense.weight.device if device is None else device,
169
+ empty_init=empty_init
170
+ )
171
+ layer.mlp.dense_h_to_4h = QuantizedLinear(
172
+ weight_bit_width=weight_bit_width,
173
+ weight=layer.mlp.dense_h_to_4h.weight.to(torch.cuda.current_device()),
174
+ bias=layer.mlp.dense_h_to_4h.bias,
175
+ dtype=layer.mlp.dense_h_to_4h.weight.dtype,
176
+ device=layer.mlp.dense_h_to_4h.weight.device if device is None else device,
177
+ empty_init=empty_init
178
+ )
179
+ layer.mlp.dense_4h_to_h = QuantizedLinear(
180
+ weight_bit_width=weight_bit_width,
181
+ weight=layer.mlp.dense_4h_to_h.weight.to(torch.cuda.current_device()),
182
+ bias=layer.mlp.dense_4h_to_h.bias,
183
+ dtype=layer.mlp.dense_4h_to_h.weight.dtype,
184
+ device=layer.mlp.dense_4h_to_h.weight.device if device is None else device,
185
+ empty_init=empty_init
186
+ )
187
+
188
+ return model
tokenization_chatglm.py ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import torch
4
+ from typing import List, Optional, Union, Dict
5
+ from sentencepiece import SentencePieceProcessor
6
+ from transformers import PreTrainedTokenizer
7
+ from transformers.utils import logging, PaddingStrategy
8
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
9
+
10
+
11
+ class SPTokenizer:
12
+ def __init__(self, model_path: str):
13
+ # reload tokenizer
14
+ assert os.path.isfile(model_path), model_path
15
+ self.sp_model = SentencePieceProcessor(model_file=model_path)
16
+
17
+ # BOS / EOS token IDs
18
+ self.n_words: int = self.sp_model.vocab_size()
19
+ self.bos_id: int = self.sp_model.bos_id()
20
+ self.eos_id: int = self.sp_model.eos_id()
21
+ self.pad_id: int = self.sp_model.unk_id()
22
+ assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
23
+
24
+ special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop", "<|system|>", "<|user|>", "<|assistant|>",
25
+ "<|observation|>"]
26
+ self.special_tokens = {}
27
+ self.index_special_tokens = {}
28
+ for token in special_tokens:
29
+ self.special_tokens[token] = self.n_words
30
+ self.index_special_tokens[self.n_words] = token
31
+ self.n_words += 1
32
+
33
+ def tokenize(self, s: str):
34
+ return self.sp_model.EncodeAsPieces(s)
35
+
36
+ def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
37
+ assert type(s) is str
38
+ t = self.sp_model.encode(s)
39
+ if bos:
40
+ t = [self.bos_id] + t
41
+ if eos:
42
+ t = t + [self.eos_id]
43
+ return t
44
+
45
+ def decode(self, t: List[int]) -> str:
46
+ text, buffer = "", []
47
+ for token in t:
48
+ if token in self.index_special_tokens:
49
+ if buffer:
50
+ text += self.sp_model.decode(buffer)
51
+ buffer = []
52
+ text += self.index_special_tokens[token]
53
+ else:
54
+ buffer.append(token)
55
+ if buffer:
56
+ text += self.sp_model.decode(buffer)
57
+ return text
58
+
59
+ def decode_tokens(self, tokens: List[str]) -> str:
60
+ text = self.sp_model.DecodePieces(tokens)
61
+ return text
62
+
63
+ def convert_token_to_id(self, token):
64
+ """ Converts a token (str) in an id using the vocab. """
65
+ if token in self.special_tokens:
66
+ return self.special_tokens[token]
67
+ return self.sp_model.PieceToId(token)
68
+
69
+ def convert_id_to_token(self, index):
70
+ """Converts an index (integer) in a token (str) using the vocab."""
71
+ if index in self.index_special_tokens:
72
+ return self.index_special_tokens[index]
73
+ if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
74
+ return ""
75
+ return self.sp_model.IdToPiece(index)
76
+
77
+
78
+ class ChatGLMTokenizer(PreTrainedTokenizer):
79
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
80
+
81
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
82
+
83
+ def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
84
+ self.name = "GLMTokenizer"
85
+
86
+ self.vocab_file = vocab_file
87
+ self.tokenizer = SPTokenizer(vocab_file)
88
+ self.special_tokens = {
89
+ "<bos>": self.tokenizer.bos_id,
90
+ "<eos>": self.tokenizer.eos_id,
91
+ "<pad>": self.tokenizer.pad_id
92
+ }
93
+ super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
94
+
95
+ def get_command(self, token):
96
+ if token in self.special_tokens:
97
+ return self.special_tokens[token]
98
+ assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
99
+ return self.tokenizer.special_tokens[token]
100
+
101
+ @property
102
+ def unk_token(self) -> str:
103
+ return "<unk>"
104
+
105
+ @property
106
+ def pad_token(self) -> str:
107
+ return "<unk>"
108
+
109
+ @property
110
+ def pad_token_id(self):
111
+ return self.get_command("<pad>")
112
+
113
+ @property
114
+ def eos_token(self) -> str:
115
+ return "</s>"
116
+
117
+ @property
118
+ def eos_token_id(self):
119
+ return self.get_command("<eos>")
120
+
121
+ @property
122
+ def vocab_size(self):
123
+ return self.tokenizer.n_words
124
+
125
+ def get_vocab(self):
126
+ """ Returns vocab as a dict """
127
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
128
+ vocab.update(self.added_tokens_encoder)
129
+ return vocab
130
+
131
+ def _tokenize(self, text, **kwargs):
132
+ return self.tokenizer.tokenize(text)
133
+
134
+ def _convert_token_to_id(self, token):
135
+ """ Converts a token (str) in an id using the vocab. """
136
+ return self.tokenizer.convert_token_to_id(token)
137
+
138
+ def _convert_id_to_token(self, index):
139
+ """Converts an index (integer) in a token (str) using the vocab."""
140
+ return self.tokenizer.convert_id_to_token(index)
141
+
142
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
143
+ return self.tokenizer.decode_tokens(tokens)
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix=None):
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+ filename_prefix (`str`, *optional*):
153
+ An optional prefix to add to the named of the saved files.
154
+
155
+ Returns:
156
+ `Tuple(str)`: Paths to the files saved.
157
+ """
158
+ if os.path.isdir(save_directory):
159
+ vocab_file = os.path.join(
160
+ save_directory, self.vocab_files_names["vocab_file"]
161
+ )
162
+ else:
163
+ vocab_file = save_directory
164
+
165
+ with open(self.vocab_file, 'rb') as fin:
166
+ proto_str = fin.read()
167
+
168
+ with open(vocab_file, "wb") as writer:
169
+ writer.write(proto_str)
170
+
171
+ return (vocab_file,)
172
+
173
+ def get_prefix_tokens(self):
174
+ prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
175
+ return prefix_tokens
176
+
177
+ def build_single_message(self, role, metadata, message):
178
+ assert role in ["system", "user", "assistant", "observation"], role
179
+ role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
180
+ message_tokens = self.tokenizer.encode(message)
181
+ tokens = role_tokens + message_tokens
182
+ return tokens
183
+
184
+ def build_chat_input(self, query, history=None, role="user"):
185
+ if history is None:
186
+ history = []
187
+ input_ids = []
188
+ for item in history:
189
+ content = item["content"]
190
+ if item["role"] == "system" and "tools" in item:
191
+ content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
192
+ input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
193
+ input_ids.extend(self.build_single_message(role, "", query))
194
+ input_ids.extend([self.get_command("<|assistant|>")])
195
+ return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
196
+
197
+ def build_inputs_with_special_tokens(
198
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
199
+ ) -> List[int]:
200
+ """
201
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
202
+ adding special tokens. A BERT sequence has the following format:
203
+
204
+ - single sequence: `[CLS] X [SEP]`
205
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
206
+
207
+ Args:
208
+ token_ids_0 (`List[int]`):
209
+ List of IDs to which the special tokens will be added.
210
+ token_ids_1 (`List[int]`, *optional*):
211
+ Optional second list of IDs for sequence pairs.
212
+
213
+ Returns:
214
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
215
+ """
216
+ prefix_tokens = self.get_prefix_tokens()
217
+ token_ids_0 = prefix_tokens + token_ids_0
218
+ if token_ids_1 is not None:
219
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
220
+ return token_ids_0
221
+
222
+ def _pad(
223
+ self,
224
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
225
+ max_length: Optional[int] = None,
226
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
227
+ pad_to_multiple_of: Optional[int] = None,
228
+ return_attention_mask: Optional[bool] = None,
229
+ ) -> dict:
230
+ """
231
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
232
+
233
+ Args:
234
+ encoded_inputs:
235
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
236
+ max_length: maximum length of the returned list and optionally padding length (see below).
237
+ Will truncate by taking into account the special tokens.
238
+ padding_strategy: PaddingStrategy to use for padding.
239
+
240
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
241
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
242
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
243
+ The tokenizer padding sides are defined in self.padding_side:
244
+
245
+ - 'left': pads on the left of the sequences
246
+ - 'right': pads on the right of the sequences
247
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
248
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
249
+ `>= 7.5` (Volta).
250
+ return_attention_mask:
251
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
252
+ """
253
+ # Load from model defaults
254
+ assert self.padding_side == "left"
255
+
256
+ required_input = encoded_inputs[self.model_input_names[0]]
257
+ seq_length = len(required_input)
258
+
259
+ if padding_strategy == PaddingStrategy.LONGEST:
260
+ max_length = len(required_input)
261
+
262
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
263
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
264
+
265
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
266
+
267
+ # Initialize attention mask if not present.
268
+ if "attention_mask" not in encoded_inputs:
269
+ encoded_inputs["attention_mask"] = [1] * seq_length
270
+
271
+ if "position_ids" not in encoded_inputs:
272
+ encoded_inputs["position_ids"] = list(range(seq_length))
273
+
274
+ if needs_to_be_padded:
275
+ difference = max_length - len(required_input)
276
+
277
+ if "attention_mask" in encoded_inputs:
278
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
279
+ if "position_ids" in encoded_inputs:
280
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
281
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
282
+
283
+ return encoded_inputs
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
3
+ size 1018370
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name_or_path": "THUDM/chatglm3-6b-base",
3
+ "remove_space": false,
4
+ "do_lower_case": false,
5
+ "tokenizer_class": "ChatGLMTokenizer",
6
+ "auto_map": {
7
+ "AutoTokenizer": [
8
+ "tokenization_chatglm.ChatGLMTokenizer",
9
+ null
10
+ ]
11
+ }
12
+ }